3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Uncovering spatial and ecological variability in gap size frequency distributions in the Canadian boreal forest

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Analyses characterizing canopy gaps are required to improve our understanding of spatial and structural variations in forest canopies and provide insight into ecosystem-level successional processes. Gap size frequency distributions (GSFD) are indicative of ecological processes and disturbance patterns. To date, GSFD in boreal forest ecosystems have not been systematically quantified over large areas using a single consistent data source. Herein we characterized GSFDs across the entirety of the Canadian boreal forest using transects of airborne laser scanning (ALS) data. ALS transects were representatively sampled within eight distinct Canadian boreal ecozones. Gaps were detected and delineated from the ALS-derived canopy height model as contiguous canopy openings ≥8 m 2 with canopy heights ≤3 m. Gaps were then stratified by ecozone and forest type (i.e. coniferous, broadleaf, mixedwood, wetland-treed), and combinations thereof, and GSFDs were calculated for each stratum. GSFDs were characterized by the scaling parameter of the power-law probability distribution, lambda (λ) and Kolmogorov-Smirnov tests confirmed that GSFDs for each stratum followed a power-law distribution. Pairwise comparisons between ecozones, forest types, and combinations thereof indicated significant differences between estimates of λ. Scaling parameters were found to be more variable by ecozone (1.96–2.31) than by forest type (2.15–2.21). These results contrast those of similar studies done in tropical forest environments, whereby λ was found to be relatively consistent across a range of site types, geological substrates, and forest types. The geographic range considered herein is much larger than that of previous studies, and broad-scale patterns in climate, landforms, and soils that are reflected in the definition of unique ecozones, likely also influence gap characteristics.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          Fire in the Earth system.

          Fire is a worldwide phenomenon that appears in the geological record soon after the appearance of terrestrial plants. Fire influences global ecosystem patterns and processes, including vegetation distribution and structure, the carbon cycle, and climate. Although humans and fire have always coexisted, our capacity to manage fire remains imperfect and may become more difficult in the future as climate change alters fire regimes. This risk is difficult to assess, however, because fires are still poorly represented in global models. Here, we discuss some of the most important issues involved in developing a better understanding of the role of fire in the Earth system.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Gap-Phase Regeneration in a Tropical Forest

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fire as the dominant driver of central Canadian boreal forest carbon balance.

              Changes in climate, atmospheric carbon dioxide concentration and fire regimes have been occurring for decades in the global boreal forest, with future climate change likely to increase fire frequency--the primary disturbance agent in most boreal forests. Previous attempts to assess quantitatively the effect of changing environmental conditions on the net boreal forest carbon balance have not taken into account the competition between different vegetation types on a large scale. Here we use a process model with three competing vascular and non-vascular vegetation types to examine the effects of climate, carbon dioxide concentrations and fire disturbance on net biome production, net primary production and vegetation dominance in 100 Mha of Canadian boreal forest. We find that the carbon balance of this region was driven by changes in fire disturbance from 1948 to 2005. Climate changes affected the variability, but not the mean, of the landscape carbon balance, with precipitation exerting a more significant effect than temperature. We show that more frequent and larger fires in the late twentieth century resulted in deciduous trees and mosses increasing production at the expense of coniferous trees. Our model did not however exhibit the increases in total forest net primary production that have been inferred from satellite data. We find that poor soil drainage decreased the variability of the landscape carbon balance, which suggests that increased climate and hydrological changes have the potential to affect disproportionately the carbon dynamics of these areas. Overall, we conclude that direct ecophysiological changes resulting from global climate change have not yet been felt in this large boreal region. Variations in the landscape carbon balance and vegetation dominance have so far been driven largely by increases in fire frequency.
                Bookmark

                Author and article information

                Contributors
                tgood@mail.ubc.ca
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                8 April 2020
                8 April 2020
                2020
                : 10
                : 6069
                Affiliations
                [1 ]ISNI 0000 0001 2288 9830, GRID grid.17091.3e, Faculty of Forestry, , 2424 Main Mall, University of British Columbia, ; Vancouver, BC V6T 1Z4 Canada
                [2 ]ISNI 0000 0001 2295 5236, GRID grid.202033.0, Canadian Forest Service (Pacific Forestry Center), , Natural Resources Canada, ; 506 West Burnside Road, Victoria, BC V8Z 1M5 Canada
                Author information
                http://orcid.org/0000-0002-6894-7925
                http://orcid.org/0000-0002-0151-9037
                http://orcid.org/0000-0003-4674-0373
                http://orcid.org/0000-0002-6942-1896
                Article
                62878
                10.1038/s41598-020-62878-z
                7142101
                32269267
                e4610bc6-c8a0-4d89-a140-a27ecc776e31
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 20 August 2019
                : 20 March 2020
                Funding
                Funded by: FundRef https://doi.org/10.13039/501100002790, Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada (NSERC Canadian Network for Research and Innovation in Machining Technology);
                Award ID: RGPIN-2018-03851
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2020

                Uncategorized
                forest ecology,forestry
                Uncategorized
                forest ecology, forestry

                Comments

                Comment on this article