10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Mechanisms of Drug-Induced Tolerance in Mycobacterium tuberculosis

      1 , 2 , 1
      Clinical Microbiology Reviews
      American Society for Microbiology

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Successful treatment of tuberculosis (TB) can be hampered by Mycobacterium tuberculosis populations that are temporarily able to survive antibiotic pressure in the absence of drug resistance-conferring mutations, a phenomenon termed drug tolerance. We summarize findings on M. tuberculosis tolerance published in the past 20 years. Key M. tuberculosis responses to drug pressure are reduced growth rates, metabolic shifting, and the promotion of efflux pump activity.

          SUMMARY

          Successful treatment of tuberculosis (TB) can be hampered by Mycobacterium tuberculosis populations that are temporarily able to survive antibiotic pressure in the absence of drug resistance-conferring mutations, a phenomenon termed drug tolerance. We summarize findings on M. tuberculosis tolerance published in the past 20 years. Key M. tuberculosis responses to drug pressure are reduced growth rates, metabolic shifting, and the promotion of efflux pump activity. Metabolic shifts upon drug pressure mainly occur in M. tuberculosis ’s lipid metabolism and redox homeostasis, with reduced tricarboxylic acid cycle activity in favor of lipid anabolism. Increased lipid anabolism plays a role in cell wall thickening, which reduces sensitivity to most TB drugs. In addition to these general mechanisms, drug-specific mechanisms have been described. Upon isoniazid exposure, M. tuberculosis reprograms several pathways associated with mycolic acid biosynthesis. Upon rifampicin exposure, M. tuberculosis upregulates the expression of its drug target rpoB . Upon bedaquiline exposure, ATP synthesis is stimulated, and the transcription factors Rv0324 and Rv0880 are activated. A better understanding of M. tuberculosis ’s responses to drug pressure will be important for the development of novel agents that prevent the development of drug tolerance following treatment initiation. Such agents could then contribute to novel TB treatment-shortening strategies.

          Related collections

          Most cited references158

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Definitions and guidelines for research on antibiotic persistence

          Increasing concerns about the rising rates of antibiotic therapy failure and advances in single-cell analyses have inspired a surge of research into antibiotic persistence. Bacterial persister cells represent a subpopulation of cells that can survive intensive antibiotic treatment without being resistant. Several approaches have emerged to define and measure persistence, and it is now time to agree on the basic definition of persistence and its relation to the other mechanisms by which bacteria survive exposure to bactericidal antibiotic treatments, such as antibiotic resistance, heteroresistance or tolerance. In this Consensus Statement, we provide definitions of persistence phenomena, distinguish between triggered and spontaneous persistence and provide a guide to measuring persistence. Antibiotic persistence is not only an interesting example of non-genetic single-cell heterogeneity, it may also have a role in the failure of antibiotic treatments. Therefore, it is our hope that the guidelines outlined in this article will pave the way for better characterization of antibiotic persistence and for understanding its relevance to clinical outcomes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Distinguishing between resistance, tolerance and persistence to antibiotic treatment.

            Antibiotic tolerance is associated with the failure of antibiotic treatment and the relapse of many bacterial infections. However, unlike resistance, which is commonly measured using the minimum inhibitory concentration (MIC) metric, tolerance is poorly characterized, owing to the lack of a similar quantitative indicator. This may lead to the misclassification of tolerant strains as resistant, or vice versa, and result in ineffective treatments. In this Opinion article, we describe recent studies of tolerance, resistance and persistence, outlining how a clear and distinct definition for each phenotype can be developed from these findings. We propose a framework for classifying the drug response of bacterial strains according to these definitions that is based on the measurement of the MIC together with a recently defined quantitative indicator of tolerance, the minimum duration for killing (MDK). Finally, we discuss genes that are associated with increased tolerance - the 'tolerome' - as targets for treating tolerant bacterial strains.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Antibiotic tolerance facilitates the evolution of resistance.

              Controlled experimental evolution during antibiotic treatment can help to explain the processes leading to antibiotic resistance in bacteria. Recently, intermittent antibiotic exposures have been shown to lead rapidly to the evolution of tolerance-that is, the ability to survive under treatment without developing resistance. However, whether tolerance delays or promotes the eventual emergence of resistance is unclear. Here we used in vitro evolution experiments to explore this question. We found that in all cases, tolerance preceded resistance. A mathematical population-genetics model showed how tolerance boosts the chances for resistance mutations to spread in the population. Thus, tolerance mutations pave the way for the rapid subsequent evolution of resistance. Preventing the evolution of tolerance may offer a new strategy for delaying the emergence of resistance.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Clinical Microbiology Reviews
                Clin Microbiol Rev
                American Society for Microbiology
                0893-8512
                1098-6618
                December 16 2020
                December 16 2020
                : 34
                : 1
                Affiliations
                [1 ]Family Medicine and Population Health (FAMPOP), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
                [2 ]DSI/NRF Centre of Excellence for Biomedical Tuberculosis Research/SA MRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
                Article
                10.1128/CMR.00141-20
                33055230
                e44faf9f-5b07-4ede-9eab-2ce4ca7b8ecb
                © 2020

                https://journals.asm.org/non-commercial-tdm-license

                History

                Comments

                Comment on this article