21
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Macrophages as determinants and regulators of fibrosis in systemic sclerosis

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          SSc is a multiphase autoimmune disease with a well-known triad of clinical manifestations including vasculopathy, inflammation and fibrosis. Although a plethora of drugs has been suggested as potential candidates to halt SSc progression, nothing has proven clinically efficient. In SSc, both innate and adaptive immune systems are abnormally activated fuelling fibrosis of the skin and other vital organs. Macrophages have been implicated in the pathogenesis of SSc and are thought to be a major source of immune dysregulation. Due to their plasticity, macrophages can initiate and sustain chronic inflammation when classically activated while, simultaneously or parallelly, when alternatively activated they are also capable of secreting fibrotic factors. Here, we briefly explain the polarization process of macrophages. Subsequently, we link the activation of macrophages and monocytes to the molecular pathology of SSc, and illustrate the interplay between macrophages and fibroblasts. Finally, we present recent/near-future clinical trials and discuss novel targets related to macrophages/monocytes activation in SSc.

          Graphical Abstract

          Related collections

          Most cited references89

          • Record: found
          • Abstract: found
          • Article: not found

          Macrophage plasticity, polarization, and function in health and disease.

          Macrophages are heterogeneous and their phenotype and functions are regulated by the surrounding micro-environment. Macrophages commonly exist in two distinct subsets: 1) Classically activated or M1 macrophages, which are pro-inflammatory and polarized by lipopolysaccharide (LPS) either alone or in association with Th1 cytokines such as IFN-γ, GM-CSF, and produce pro-inflammatory cytokines such as interleukin-1β (IL-1β), IL-6, IL-12, IL-23, and TNF-α; and 2) Alternatively activated or M2 macrophages, which are anti-inflammatory and immunoregulatory and polarized by Th2 cytokines such as IL-4 and IL-13 and produce anti-inflammatory cytokines such as IL-10 and TGF-β. M1 and M2 macrophages have different functions and transcriptional profiles. They have unique abilities by destroying pathogens or repair the inflammation-associated injury. It is known that M1/M2 macrophage balance polarization governs the fate of an organ in inflammation or injury. When the infection or inflammation is severe enough to affect an organ, macrophages first exhibit the M1 phenotype to release TNF-α, IL-1β, IL-12, and IL-23 against the stimulus. But, if M1 phase continues, it can cause tissue damage. Therefore, M2 macrophages secrete high amounts of IL-10 and TGF-β to suppress the inflammation, contribute to tissue repair, remodeling, vasculogenesis, and retain homeostasis. In this review, we first discuss the basic biology of macrophages including origin, differentiation and activation, tissue distribution, plasticity and polarization, migration, antigen presentation capacity, cytokine and chemokine production, metabolism, and involvement of microRNAs in macrophage polarization and function. Secondly, we discuss the protective and pathogenic role of the macrophage subsets in normal and pathological pregnancy, anti-microbial defense, anti-tumor immunity, metabolic disease and obesity, asthma and allergy, atherosclerosis, fibrosis, wound healing, and autoimmunity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Exploring the full spectrum of macrophage activation.

            Macrophages display remarkable plasticity and can change their physiology in response to environmental cues. These changes can give rise to different populations of cells with distinct functions. In this Review we suggest a new grouping of macrophage populations based on three different homeostatic activities - host defence, wound healing and immune regulation. We propose that similarly to primary colours, these three basic macrophage populations can blend into various other 'shades' of activation. We characterize each population and provide examples of macrophages from specific disease states that have the characteristics of one or more of these populations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The M1 and M2 paradigm of macrophage activation: time for reassessment

              Macrophages are endowed with a variety of receptors for lineage-determining growth factors, T helper (Th) cell cytokines, and B cell, host, and microbial products. In tissues, macrophages mature and are activated in a dynamic response to combinations of these stimuli to acquire specialized functional phenotypes. As for the lymphocyte system, a dichotomy has been proposed for macrophage activation: classic vs. alternative, also M1 and M2, respectively. In view of recent research about macrophage functions and the increasing number of immune-relevant ligands, a revision of the model is needed. Here, we assess how cytokines and pathogen signals influence their functional phenotypes and the evidence for M1 and M2 functions and revisit a paradigm initially based on the role of a restricted set of selected ligands in the immune response.
                Bookmark

                Author and article information

                Contributors
                Journal
                Rheumatology (Oxford)
                Rheumatology (Oxford)
                brheum
                Rheumatology (Oxford, England)
                Oxford University Press
                1462-0324
                1462-0332
                February 2023
                21 July 2022
                21 July 2022
                : 62
                : 2
                : 535-545
                Affiliations
                University of Groningen, University Medical Centre Groningen, Department of Internal Medicine, Division of Vascular Medicine
                University of Groningen, University Medical Centre Groningen, Department of Rheumatology and Clinical Immunology
                University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology , Groningen, The Netherlands
                University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology , Groningen, The Netherlands
                UCL Division of Medicine, University College London
                UCL Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital , London, UK
                University of Groningen, University Medical Centre Groningen, Department of Internal Medicine, Division of Vascular Medicine
                Author notes
                Correspondence to: Douwe J. Mulder, Department of Internal Medicine, Division of Vascular Medicine, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands. E-mail: d.j.mulder@ 123456umcg.nl
                Author information
                https://orcid.org/0000-0001-5406-7604
                https://orcid.org/0000-0002-6581-6508
                https://orcid.org/0000-0003-3975-8938
                https://orcid.org/0000-0003-3715-6474
                Article
                keac410
                10.1093/rheumatology/keac410
                9891414
                35861385
                e440f6ce-b273-45ca-9151-c20270e70e14
                © The Author(s) 2022. Published by Oxford University Press on behalf of the British Society for Rheumatology.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License ( https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

                History
                : 05 May 2022
                : 24 June 2022
                : 07 July 2022
                : 08 August 2022
                Page count
                Pages: 11
                Funding
                Funded by: Boehringer Ingelheim, DOI 10.13039/100001003;
                Categories
                Reviews
                AcademicSubjects/MED00360

                Rheumatology
                scleroderma,ssc,macrophages,monocytes,fibrosis,potential targeted therapeutics
                Rheumatology
                scleroderma, ssc, macrophages, monocytes, fibrosis, potential targeted therapeutics

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content350

                Cited by9

                Most referenced authors1,421