Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      High-fidelity light-field display with enhanced information utilization by modulating chrominance and luminance separately

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Light-field displays typically consist of a two-dimensional (2D) display panel and a light modulation device. The 2D panel presents synthesized parallax images, with the total information content of the three-dimensional (3D) light field dictated by the panel’s total resolution. Angular resolution serves as a critical metric for light-field displays, where higher angular resolution correlates with a more realistic 3D visual experience. However, the improvement of angular resolution is typically accompanied by a reduction in spatial resolution, due to the limitations of the 2D display panel’s total resolution. To address this challenge, a light-field display method with enhanced information utilization is introduced, achieved through the independent modulation of chrominance and luminance. A static light-field image display system is proposed to verify the feasibility of this method. The system employs a bidirectional angular modulation grating (BAMG) and a collimated light source (CLS) to create uniformly distributed viewpoints in space. A luminance modulation film (LMF) and a chrominance modulation film (CMF) are utilized to modulate the light-field information, with chrominance and luminance synthesized images printed at pixel densities of 720 pixels per inch (PPI) and 8000 dots per inch (DPI), respectively, to align with the differential sensitivities of the human visual system. In the experiment, the proposed display system achieves a full-parallax, high-fidelity color display with a 98.2° horizontal and 97.7° vertical field of view (FOV). So, the light-field display method of modulating chrominance and luminance separately has been proven to achieve high-fidelity display effects.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Photoreceptors at a glance.

          Retinal photoreceptor cells contain a specialized outer segment (OS) compartment that functions in the capture of light and its conversion into electrical signals in a process known as phototransduction. In rods, photoisomerization of 11-cis to all-trans retinal within rhodopsin triggers a biochemical cascade culminating in the closure of cGMP-gated channels and hyperpolarization of the cell. Biochemical reactions return the cell to its 'dark state' and the visual cycle converts all-trans retinal back to 11-cis retinal for rhodopsin regeneration. OS are continuously renewed, with aged membrane removed at the distal end by phagocytosis and new membrane added at the proximal end through OS disk morphogenesis linked to protein trafficking. The molecular basis for disk morphogenesis remains to be defined in detail although several models have been proposed, and molecular mechanisms underlying protein trafficking are under active investigation. The aim of this Cell Science at a Glance article and the accompanying poster is to highlight our current understanding of photoreceptor structure, phototransduction, the visual cycle, OS renewal, protein trafficking and retinal degenerative diseases.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Ultra-low-energy programmable non-volatile silicon photonics based on phase-change materials with graphene heaters

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Chromatic Illumination Discrimination Ability Reveals that Human Colour Constancy Is Optimised for Blue Daylight Illuminations

              The phenomenon of colour constancy in human visual perception keeps surface colours constant, despite changes in their reflected light due to changing illumination. Although colour constancy has evolved under a constrained subset of illuminations, it is unknown whether its underlying mechanisms, thought to involve multiple components from retina to cortex, are optimised for particular environmental variations. Here we demonstrate a new method for investigating colour constancy using illumination matching in real scenes which, unlike previous methods using surface matching and simulated scenes, allows testing of multiple, real illuminations. We use real scenes consisting of solid familiar or unfamiliar objects against uniform or variegated backgrounds and compare discrimination performance for typical illuminations from the daylight chromaticity locus (approximately blue-yellow) and atypical spectra from an orthogonal locus (approximately red-green, at correlated colour temperature 6700 K), all produced in real time by a 10-channel LED illuminator. We find that discrimination of illumination changes is poorer along the daylight locus than the atypical locus, and is poorest particularly for bluer illumination changes, demonstrating conversely that surface colour constancy is best for blue daylight illuminations. Illumination discrimination is also enhanced, and therefore colour constancy diminished, for uniform backgrounds, irrespective of the object type. These results are not explained by statistical properties of the scene signal changes at the retinal level. We conclude that high-level mechanisms of colour constancy are biased for the blue daylight illuminations and variegated backgrounds to which the human visual system has typically been exposed.
                Bookmark

                Author and article information

                Contributors
                yuxunbo@126.com
                Journal
                Light Sci Appl
                Light Sci Appl
                Light, Science & Applications
                Nature Publishing Group UK (London )
                2095-5545
                2047-7538
                10 February 2025
                10 February 2025
                2025
                : 14
                : 78
                Affiliations
                [1 ]State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (BUPT), ( https://ror.org/04w9fbh59) 100876 Beijing, China
                [2 ]Jianghuai Advance Technology Center, Hefei, 230000 China
                [3 ]Zhuhai Zhenxiang Optoelectronics Technology Co., Ltd, Zhuhai, 519075 China
                Article
                1752
                10.1038/s41377-025-01752-x
                11808114
                39924493
                e421c475-068a-450c-b856-be885e8461f3
                © The Author(s) 2025

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 26 August 2024
                : 7 January 2025
                : 7 January 2025
                Funding
                Funded by: National Key Research and Development Program of China (2023YFB3611500),National Natural Science Foundation of China (62175015)
                Funded by: National Natural Science Foundation of China (62335002, 62075016)
                Categories
                Article
                Custom metadata
                © Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), CAS 2025

                displays,imaging and sensing
                displays, imaging and sensing

                Comments

                Comment on this article