19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Phytochemistry, pharmacological activities, nanoparticle fabrication, commercial products and waste utilization of Carica papaya L.: A comprehensive review

      , , , ,
      Current Research in Biotechnology
      Elsevier BV

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references200

          • Record: found
          • Abstract: found
          • Article: not found

          Screening of plant extracts for antioxidant activity: a comparative study on three testing methods.

          Three methods widely employed in the evaluation of antioxidant activity, namely 2,2'-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging method, static headspace gas chromatography (HS-GC) and beta-carotene bleaching test (BCBT), have been compared with regard to their application in the screening of plant extracts. The strengths and limitations of each method have been illustrated by testing a number of extracts, of differing polarity, from plants of the genus Sideritis, and two known antioxidants (butylated hydroxytoluene and rosmarinic acid). The sample polarity was important for the exhibited activity in the BCBT and HS-GC methods but not for the DPPH method. The complex composition of the extracts and partition phenomena affected their activity in each assay. The value of the BCBT method appears to be limited to less polar samples. Although slow, the HS-GC method is preferable for assessing the antioxidant inhibitory properties on the formation of unwanted secondary volatile products. Being rapid, simple and independent of sample polarity, the DPPH method is very convenient for the quick screening of many samples for radical scavenging activity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Green synthesis of colloidal copper oxide nanoparticles using Carica papaya and its application in photocatalytic dye degradation.

            Copper oxide (CuO) nanoparticles were synthesized by treating 5 mM cupric sulphate with Carica papaya leaves extract. The kinetics of the reaction was studied using UV-visible spectrophotometry. An intense surface Plasmon resonance between 250-300 nm in the UV-vis spectrum clearly reveals the formation of copper oxide nanoparticles. The results of scanning electron microscopy (SEM) and dynamic light scattering (DLS) exhibited that the green synthesized copper oxide nanoparticles are rod in shape and having a mean particle size of 140 nm, further negative zeta potential disclose its stability at -28.9 mV. The Fourier-transform infrared (FTIR) spectroscopy results examined the occurrence of bioactive functional groups required for the reduction of copper ions. X-ray diffraction (XRD) spectra confirmed the copper oxide nanoparticles crystalline nature. Furthermore, colloidal copper oxide nanoparticles effectively degrade the Coomassie brilliant blue R-250 dye beneath the sunlight.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Papaya leaves extract as a novel eco-friendly corrosion inhibitor for Cu in H2SO4 medium

                Bookmark

                Author and article information

                Contributors
                Journal
                Current Research in Biotechnology
                Current Research in Biotechnology
                Elsevier BV
                25902628
                November 2020
                November 2020
                : 2
                : 145-160
                Article
                10.1016/j.crbiot.2020.11.001
                e40f00cb-430c-454c-9157-f086c31624b5
                © 2020

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article