20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Orbits of massive satellite galaxies – I. A close look at the Large Magellanic Cloud and a new orbital history for M33

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references118

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The Structure of Cold Dark Matter Halos

          We use N-body simulations to investigate the structure of dark halos in the standard Cold Dark Matter cosmogony. Halos are excised from simulations of cosmologically representative regions and are resimulated individually at high resolution. We study objects with masses ranging from those of dwarf galaxy halos to those of rich galaxy clusters. The spherically averaged density profiles of all our halos can be fit over two decades in radius by scaling a simple ``universal'' profile. The characteristic overdensity of a halo, or equivalently its concentration, correlates strongly with halo mass in a way which reflects the mass dependence of the epoch of halo formation. Halo profiles are approximately isothermal over a large range in radii, but are significantly shallower than \(r^{-2}\) near the center and steeper than \(r^{-2}\) near the virial radius. Matching the observed rotation curves of disk galaxies requires disk mass-to-light ratios to increase systematically with luminosity. Further, it suggests that the halos of bright galaxies depend only weakly on galaxy luminosity and have circular velocities significantly lower than the disk rotation speed. This may explain why luminosity and dynamics are uncorrelated in observed samples of binary galaxies and of satellite/spiral systems. For galaxy clusters, our halo models are consistent both with the presence of giant arcs and with the observed structure of the intracluster medium, and they suggest a simple explanation for the disparate estimates of cluster core radii found by previous authors. Our results also highlight two shortcomings of the CDM model. CDM halos are too concentrated to be consistent with the halo parameters inferred for dwarf irregulars, and the predicted abundance of galaxy halos is larger than the observed abundance of galaxies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results

            We present cosmological parameter constraints based on the final nine-year WMAP data, in conjunction with additional cosmological data sets. The WMAP data alone, and in combination, continue to be remarkably well fit by a six-parameter LCDM model. When WMAP data are combined with measurements of the high-l CMB anisotropy, the BAO scale, and the Hubble constant, the densities, Omegabh2, Omegach2, and Omega_L, are each determined to a precision of ~1.5%. The amplitude of the primordial spectrum is measured to within 3%, and there is now evidence for a tilt in the primordial spectrum at the 5sigma level, confirming the first detection of tilt based on the five-year WMAP data. At the end of the WMAP mission, the nine-year data decrease the allowable volume of the six-dimensional LCDM parameter space by a factor of 68,000 relative to pre-WMAP measurements. We investigate a number of data combinations and show that their LCDM parameter fits are consistent. New limits on deviations from the six-parameter model are presented, for example: the fractional contribution of tensor modes is limited to r<0.13 (95% CL); the spatial curvature parameter is limited to -0.0027 (+0.0039/-0.0038); the summed mass of neutrinos is <0.44 eV (95% CL); and the number of relativistic species is found to be 3.84+/-0.40 when the full data are analyzed. The joint constraint on Neff and the primordial helium abundance agrees with the prediction of standard Big Bang nucleosynthesis. We compare recent PLANCK measurements of the Sunyaev-Zel'dovich effect with our seven-year measurements, and show their mutual agreement. Our analysis of the polarization pattern around temperature extrema is updated. This confirms a fundamental prediction of the standard cosmological model and provides a striking illustration of acoustic oscillations and adiabatic initial conditions in the early universe.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Introducing the Illustris Project: Simulating the coevolution of dark and visible matter in the Universe

              We introduce the Illustris Project, a series of large-scale hydrodynamical simulations of galaxy formation. The highest resolution simulation, Illustris-1, covers a volume of \((106.5\,{\rm Mpc})^3\), has a dark mass resolution of \({6.26 \times 10^{6}\,{\rm M}_\odot}\), and an initial baryonic matter mass resolution of \({1.26 \times 10^{6}\,{\rm M}_\odot}\). At \(z=0\) gravitational forces are softened on scales of \(710\,{\rm pc}\), and the smallest hydrodynamical gas cells have an extent of \(48\,{\rm pc}\). We follow the dynamical evolution of \(2\times 1820^3\) resolution elements and in addition passively evolve \(1820^3\) Monte Carlo tracer particles reaching a total particle count of more than \(18\) billion. The galaxy formation model includes: primordial and metal-line cooling with self-shielding corrections, stellar evolution, stellar feedback, gas recycling, chemical enrichment, supermassive black hole growth, and feedback from active galactic nuclei. At \(z=0\) our simulation volume contains about \(40,000\) well-resolved galaxies covering a diverse range of morphologies and colours including early-type, late-type and irregular galaxies. The simulation reproduces reasonably well the cosmic star formation rate density, the galaxy luminosity function, and baryon conversion efficiency at \(z=0\). It also qualitatively captures the impact of galaxy environment on the red fractions of galaxies. The internal velocity structure of selected well-resolved disk galaxies obeys the stellar and baryonic Tully-Fisher relation together with flat circular velocity curves. In the well-resolved regime the simulation reproduces the observed mix of early-type and late-type galaxies. Our model predicts a halo mass dependent impact of baryonic effects on the halo mass function and the masses of haloes caused by feedback from supernova and active galactic nuclei.
                Bookmark

                Author and article information

                Journal
                Monthly Notices of the Royal Astronomical Society
                Mon. Not. R. Astron. Soc.
                Oxford University Press (OUP)
                0035-8711
                1365-2966
                November 15 2016
                February 01 2017
                : 464
                : 4
                : 3825-3849
                Article
                10.1093/mnras/stw2616
                e3e9d473-a34e-4515-a1f1-0803ff8b7bf1
                © 2016
                History

                Comments

                Comment on this article