58
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum

      Nature Communications
      Nature Publishing Group

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Corynebacterium glutamicum is an important industrial metabolite producer that is difficult to genetically engineer. Although the Streptococcus pyogenes (Sp) CRISPR-Cas9 system has been adapted for genome editing of multiple bacteria, it cannot be introduced into C. glutamicum. Here we report a Francisella novicida (Fn) CRISPR-Cpf1-based genome-editing method for C. glutamicum. CRISPR-Cpf1, combined with single-stranded DNA (ssDNA) recombineering, precisely introduces small changes into the bacterial genome at efficiencies of 86–100%. Large gene deletions and insertions are also obtained using an all-in-one plasmid consisting of FnCpf1, CRISPR RNA, and homologous arms. The two CRISPR-Cpf1-assisted systems enable N iterative rounds of genome editing in 3N+4 or 3N+2 days. A proof-of-concept, codon saturation mutagenesis at G149 of γ-glutamyl kinase relieves L-proline inhibition using Cpf1-assisted ssDNA recombineering. Thus, CRISPR-Cpf1-based genome editing provides a highly efficient tool for genetic engineering of Corynebacterium and other bacteria that cannot utilize the Sp CRISPR-Cas9 system.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: not found
          • Article: not found

          Enzymatic assembly of DNA molecules up to several hundred kilobases.

          We describe an isothermal, single-reaction method for assembling multiple overlapping DNA molecules by the concerted action of a 5' exonuclease, a DNA polymerase and a DNA ligase. First we recessed DNA fragments, yielding single-stranded DNA overhangs that specifically annealed, and then covalently joined them. This assembly method can be used to seamlessly construct synthetic and natural genes, genetic pathways and entire genomes, and could be a useful molecular engineering tool.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            RNA-guided human genome engineering via Cas9.

            Bacteria and archaea have evolved adaptive immune defenses, termed clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems, that use short RNA to direct degradation of foreign nucleic acids. Here, we engineer the type II bacterial CRISPR system to function with custom guide RNA (gRNA) in human cells. For the endogenous AAVS1 locus, we obtained targeting rates of 10 to 25% in 293T cells, 13 to 8% in K562 cells, and 2 to 4% in induced pluripotent stem cells. We show that this process relies on CRISPR components; is sequence-specific; and, upon simultaneous introduction of multiple gRNAs, can effect multiplex editing of target loci. We also compute a genome-wide resource of ~190 K unique gRNAs targeting ~40.5% of human exons. Our results establish an RNA-guided editing tool for facile, robust, and multiplexable human genome engineering.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy.

              Unlike other methods for docking ligands to the rigid 3D structure of a known protein receptor, Glide approximates a complete systematic search of the conformational, orientational, and positional space of the docked ligand. In this search, an initial rough positioning and scoring phase that dramatically narrows the search space is followed by torsionally flexible energy optimization on an OPLS-AA nonbonded potential grid for a few hundred surviving candidate poses. The very best candidates are further refined via a Monte Carlo sampling of pose conformation; in some cases, this is crucial to obtaining an accurate docked pose. Selection of the best docked pose uses a model energy function that combines empirical and force-field-based terms. Docking accuracy is assessed by redocking ligands from 282 cocrystallized PDB complexes starting from conformationally optimized ligand geometries that bear no memory of the correctly docked pose. Errors in geometry for the top-ranked pose are less than 1 A in nearly half of the cases and are greater than 2 A in only about one-third of them. Comparisons to published data on rms deviations show that Glide is nearly twice as accurate as GOLD and more than twice as accurate as FlexX for ligands having up to 20 rotatable bonds. Glide is also found to be more accurate than the recently described Surflex method.
                Bookmark

                Author and article information

                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group
                2041-1723
                04 May 2017
                2017
                : 8
                : 15179
                Affiliations
                [1 ]Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai 200032, China
                [2 ]Shanghai Research and Development Center of Industrial Biotechnology , Shanghai 201201, China
                [3 ]Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing 200237, China
                [4 ]College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , Nanjing 211816, China
                [5 ]School of Pharmacy, Shanghai Jiaotong University , Shanghai 200240, China
                [6 ]State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , Shanghai 200032, China
                Author notes
                Article
                ncomms15179
                10.1038/ncomms15179
                5418603
                28469274
                e3bab0c9-54e4-4618-9933-53f896f24558
                Copyright © 2017, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 24 November 2016
                : 07 March 2017
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article