2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      lncRNA LINC00473 promotes proliferation, migration, invasion and inhibition of apoptosis of non-small cell lung cancer cells by acting as a sponge of miR-497-5p

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lung cancer is the leading cause of cancer-associated death worldwide and exhibits a poor prognosis. The present study aimed to determine the effect of long non-coding (lnc)RNA-LINC00473 on the development of non-small cell lung cancer (NSCLC) cells by regulating the expression of microRNA (miR)-497-5p. Reverse transcription-quantitative PCR was conducted to detect the level of LINC00473 and miR-497-5p. An MTT assay, flow cytometry and Transwell tests were performed to evaluate the proliferation, apoptosis, migration and invasion of NSCLC cells. Western blotting was performed to detect the expression of apoptosis- and migration-related proteins. RNA immunoprecipitation and a luciferase reporter assay were performed to verify the regulatory relationship between lncRNA-LINC00473 and miR-497-5p. LINC00473 expression was upregulated in lung cancer tissues and NSCLC cells (A549 and H1299) when compared with adjacent tissues or human bronchial epithelial cell lines and the 5-year survival rate was lower in patients with high LINC00473 expression compared with in patients with low LINC00473 expression. A negative correlation between LINC00473 and miR-497-5p was observed in lung cancer tissues. Proliferation, migration and invasion as well as the related protein levels were increased in A549 and H1299 transfected with pcDNA3.1-LINC00473, while the opposite results were obtained in A549 and H1299 transfected with small interfering (si)-LINC00473. Notably, it was demonstrated that LINC00473 could bind directly with miR-497-5p and inhibit its expression. miR-497-5p inhibitors reversed the effect of si-LINC00473. Furthermore, the present study demonstrated that LINC00473 promoted the malignant behaviour of NSCLC cells via regulating the ERK/p38 and MAPK signalling pathways and the expression of miR-497-5p.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries

          This article provides a status report on the global burden of cancer worldwide using the GLOBOCAN 2018 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer, with a focus on geographic variability across 20 world regions. There will be an estimated 18.1 million new cancer cases (17.0 million excluding nonmelanoma skin cancer) and 9.6 million cancer deaths (9.5 million excluding nonmelanoma skin cancer) in 2018. In both sexes combined, lung cancer is the most commonly diagnosed cancer (11.6% of the total cases) and the leading cause of cancer death (18.4% of the total cancer deaths), closely followed by female breast cancer (11.6%), prostate cancer (7.1%), and colorectal cancer (6.1%) for incidence and colorectal cancer (9.2%), stomach cancer (8.2%), and liver cancer (8.2%) for mortality. Lung cancer is the most frequent cancer and the leading cause of cancer death among males, followed by prostate and colorectal cancer (for incidence) and liver and stomach cancer (for mortality). Among females, breast cancer is the most commonly diagnosed cancer and the leading cause of cancer death, followed by colorectal and lung cancer (for incidence), and vice versa (for mortality); cervical cancer ranks fourth for both incidence and mortality. The most frequently diagnosed cancer and the leading cause of cancer death, however, substantially vary across countries and within each country depending on the degree of economic development and associated social and life style factors. It is noteworthy that high-quality cancer registry data, the basis for planning and implementing evidence-based cancer control programs, are not available in most low- and middle-income countries. The Global Initiative for Cancer Registry Development is an international partnership that supports better estimation, as well as the collection and use of local data, to prioritize and evaluate national cancer control efforts. CA: A Cancer Journal for Clinicians 2018;0:1-31. © 2018 American Cancer Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.

            The two most commonly used methods to analyze data from real-time, quantitative PCR experiments are absolute quantification and relative quantification. Absolute quantification determines the input copy number, usually by relating the PCR signal to a standard curve. Relative quantification relates the PCR signal of the target transcript in a treatment group to that of another sample such as an untreated control. The 2(-Delta Delta C(T)) method is a convenient way to analyze the relative changes in gene expression from real-time quantitative PCR experiments. The purpose of this report is to present the derivation, assumptions, and applications of the 2(-Delta Delta C(T)) method. In addition, we present the derivation and applications of two variations of the 2(-Delta Delta C(T)) method that may be useful in the analysis of real-time, quantitative PCR data. Copyright 2001 Elsevier Science (USA).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cancer statistics, 2019

              Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths that will occur in the United States and compiles the most recent data on cancer incidence, mortality, and survival. Incidence data, available through 2015, were collected by the Surveillance, Epidemiology, and End Results Program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data, available through 2016, were collected by the National Center for Health Statistics. In 2019, 1,762,450 new cancer cases and 606,880 cancer deaths are projected to occur in the United States. Over the past decade of data, the cancer incidence rate (2006-2015) was stable in women and declined by approximately 2% per year in men, whereas the cancer death rate (2007-2016) declined annually by 1.4% and 1.8%, respectively. The overall cancer death rate dropped continuously from 1991 to 2016 by a total of 27%, translating into approximately 2,629,200 fewer cancer deaths than would have been expected if death rates had remained at their peak. Although the racial gap in cancer mortality is slowly narrowing, socioeconomic inequalities are widening, with the most notable gaps for the most preventable cancers. For example, compared with the most affluent counties, mortality rates in the poorest counties were 2-fold higher for cervical cancer and 40% higher for male lung and liver cancers during 2012-2016. Some states are home to both the wealthiest and the poorest counties, suggesting the opportunity for more equitable dissemination of effective cancer prevention, early detection, and treatment strategies. A broader application of existing cancer control knowledge with an emphasis on disadvantaged groups would undoubtedly accelerate progress against cancer.
                Bookmark

                Author and article information

                Journal
                Oncol Lett
                Oncol Lett
                OL
                Oncology Letters
                D.A. Spandidos
                1792-1074
                1792-1082
                June 2021
                30 March 2021
                30 March 2021
                : 21
                : 6
                : 429
                Affiliations
                [1 ]Department of Respiration, The Second Hospital of Shandong University, Jinan, Shandong, 250000, P.R. China
                [2 ]Department of Respiration, Weihai Municipal Hospital, Weihai, Shandong 264200, P.R. China
                [3 ]Department of Emergency Medicine, The Second Hospital of Shandong University, Jinan, Shandong 250000, P.R. China
                Author notes
                Correspondence to: Dr Ming-Ju Shao, Department of Emergency Medicine, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, Shandong 250000, P.R. China, E-mail: shaomingju123@ 123456126.com
                Article
                OL-0-0-12690
                10.3892/ol.2021.12690
                8045175
                33868467
                e3af23ea-fb5f-4f1b-aec0-f88dad4e8ab0
                Copyright: © Xu et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 17 January 2020
                : 14 January 2021
                Categories
                Articles

                Oncology & Radiotherapy
                non-small cell lung cancer,linc00473,mir-497-5p,proliferation,mapk
                Oncology & Radiotherapy
                non-small cell lung cancer, linc00473, mir-497-5p, proliferation, mapk

                Comments

                Comment on this article