205
views
0
recommends
+1 Recommend
0 collections
    14
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      DNA methylation changes of whole blood cells in response to active smoking exposure in adults: a systematic review of DNA methylation studies

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Active smoking is a major preventable public health problem and an established critical factor for epigenetic modification. In this systematic review, we identified 17 studies addressing the association of active smoking exposure with methylation modifications in blood DNA, including 14 recent epigenome-wide association studies (EWASs) and 3 gene-specific methylation studies (GSMSs) on the gene regions identified by EWASs. Overall, 1460 smoking-associated CpG sites were identified in the EWASs, of which 62 sites were detected in multiple (≥3) studies. The three most frequently reported CpG sites (genes) in whole blood samples were cg05575921 ( AHRR), cg03636183 ( F2RL3), and cg19859270 ( GPR15), followed by other loci within intergenic regions 2q37.1 and 6p21.33. These significant smoking-related genes were further assessed by specific methylation assays in three GSMSs and reflected not only current but also lifetime or long-term exposure to active smoking. In conclusion, this review summarizes the evidences for the use of blood DNA methylation patterns as biomarkers of smoking exposure for research and clinical practice. In particular, it provides a reservoir for constructing a smoking exposure index score which could be used to more precisely quantify long-term smoking exposure and evaluate the risks of smoking-induced diseases.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s13148-015-0148-3) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease.

          Association studies offer a potentially powerful approach to identify genetic variants that influence susceptibility to common disease, but are plagued by the impression that they are not consistently reproducible. In principle, the inconsistency may be due to false positive studies, false negative studies or true variability in association among different populations. The critical question is whether false positives overwhelmingly explain the inconsistency. We analyzed 301 published studies covering 25 different reported associations. There was a large excess of studies replicating the first positive reports, inconsistent with the hypothesis of no true positive associations (P < 10(-14)). This excess of replications could not be reasonably explained by publication bias and was concentrated among 11 of the 25 associations. For 8 of these 11 associations, pooled analysis of follow-up studies yielded statistically significant replication of the first report, with modest estimated genetic effects. Thus, a sizable fraction (but under half) of reported associations have strong evidence of replication; for these, false negative, underpowered studies probably contribute to inconsistent replication. We conclude that there are probably many common variants in the human genome with modest but real effects on common disease risk, and that studies using large samples will convincingly identify such variants.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Tobacco-smoking-related differential DNA methylation: 27K discovery and replication.

            Tobacco smoking is responsible for substantial morbidity and mortality worldwide, in particular through cardiovascular, pulmonary, and malignant pathology. CpG methylation might plausibly play a role in a variety of smoking-related phenomena, as suggested by candidate gene promoter or global methylation studies. Arrays allowing hypothesis-free searches on a scale resembling genome-wide studies of SNPs have become available only very recently. Methylation extents in peripheral-blood DNA were assessed at 27,578 sites in more than 14,000 gene promoter regions in 177 current smokers, former smokers, and those who had never smoked, with the use of the Illumina HumanMethylation 27K BeadChip. This revealed a single locus, cg03636183, located in F2RL3, with genome-wide significance for lower methylation in smokers (p = 2.68 × 10(-31)). This was similarly significant in 316 independent replication samples analyzed by mass spectrometry and Sequenom EpiTyper (p = 6.33 × 10(-34)). Our results, which were based on a rigorous replication approach, show that the gene coding for a potential drug target of cardiovascular importance features altered methylation patterns in smokers. To date, this gene had not attracted attention in the literature on smoking. Copyright © 2011 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Cigarette smoking and DNA methylation

              DNA methylation is the most studied epigenetic modification, capable of controlling gene expression in the contexts of normal traits or diseases. It is highly dynamic during early embryogenesis and remains relatively stable throughout life, and such patterns are intricately related to human development. DNA methylation is a quantitative trait determined by a complex interplay of genetic and environmental factors. Genetic variants at a specific locus can influence both regional and distant DNA methylation. The environment can have varying effects on DNA methylation depending on when the exposure occurs, such as during prenatal life or during adulthood. In particular, cigarette smoking in the context of both current smoking and prenatal exposure is a strong modifier of DNA methylation. Epigenome-wide association studies have uncovered candidate genes associated with cigarette smoking that have biologically relevant functions in the etiology of smoking-related diseases. As such, DNA methylation is a potential mechanistic link between current smoking and cancer, as well as prenatal cigarette-smoke exposure and the development of adult chronic diseases.
                Bookmark

                Author and article information

                Contributors
                xu.gao@dkfz-heidelberg.de
                m.jia@dkfz-heidelberg.de
                y.zhang@dkfz-heidelberg.de
                l.breitling@dkfz-heidelberg.de
                +49-6221-421300 , h.brenner@dkfz-heidelberg.de
                Journal
                Clin Epigenetics
                Clin Epigenetics
                Clinical Epigenetics
                BioMed Central (London )
                1868-7075
                1868-7083
                16 October 2015
                16 October 2015
                2015
                : 7
                : 113
                Affiliations
                [ ]Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, D-69120 Heidelberg, Germany
                [ ]Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, D-69120 Heidelberg, Germany
                [ ]German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
                Article
                148
                10.1186/s13148-015-0148-3
                4609112
                26478754
                e3a114d1-8ccc-4495-aa49-1758d73facf3
                © Gao et al. 2015

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 28 August 2015
                : 6 October 2015
                Categories
                Review
                Custom metadata
                © The Author(s) 2015

                Genetics
                dna methylation,active smoking,whole blood cells,systematic review
                Genetics
                dna methylation, active smoking, whole blood cells, systematic review

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content337

                Cited by182

                Most referenced authors459