23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Protective Effects of Lycium barbarum Polysaccharides on Testis Spermatogenic Injury Induced by Bisphenol A in Mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To observe the effects of Lycium barbarum polysaccharides (LBP) on testis spermatogenic injuries induced by Bisphenol A (BPA) in mice. BPA was subcutaneously injected into mice at a dose of 20 mg/kg body weight (BW) for 7 consecutive days. LBP was administered simultaneously with BPA by gavage daily at the dose of 50, 100, and 200 mg/kg BW for 7 days. After treatment, the weight and the histopathology changes of testis and epididymis were examined; the contents of T, LH, GnRH, antioxidant enzyme, and malondialdehyde (MDA) in serum were detected; proapoptotic protein Bax and antiapoptotic protein Bcl-2 were also detected by immunohistochemical method. Results showed that the weights of testis and epididymis were all increased after supplement with different dosages of LBP compared with BPA group, and the activities of SOD and GSH-Px were significantly increased in LBP groups, while MDA contents were gradually decreased. Moreover, the levels of T, LH, and GnRH were significantly elevated in serum treated with 100 mg/kg LBP. LBP also shows significant positive effects on the expression of Bcl-2/Bax in BPA treated mice. It is concluded that LBP may be one of the potential ingredients protecting the adult male animals from BPA induced reproductive damage.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Neonatal exposure of male rats to Bisphenol A impairs fertility and expression of sertoli cell junctional proteins in the testis.

          Sertoli cell junctional proteins (SCJP) (viz. adhesion, gap and tight junctions) are important for spermatogenesis and perturbations in expression of these proteins are associated with impairments in process of sperm production. Bisphenol A (BPA) is an endocrine disrupter that has been associated with impaired spermatogenesis. However the mechanistic basis of impaired spermatogenesis is unknown, whether BPA is a Sertoli cell toxicant has not yet been fully investigated. The present study was undertaken to decipher the effects of neonatal exposure of male rats to BPA on fertility and its effect on the testicular expression of SCJP during development. Neonatal male rats were s.c. injected with BPA at doses ranging from 0.6 to 10 microg/rat (100-1600 microg/kg bw of BPA) on post-natal days (PNDs) 1-5, and controls received vehicle. Diethylstilbestrol (DES) was used as a positive control. Male fertility was assessed during adulthood and the lowest dose of BPA that was most effective at impairing fertility was determined. Immunohistochemical localization for Connexin 43 (Cx-43, gap junctional), Zona Occludin-1 (ZO-1, tight junctions) and N-cadherin (adherens junction) was carried out on testicular tissue sections obtained from PNDs 15, 30, 45 and 90 of rats exposed to lowest dose of BPA that impaired fertility. Females mated with male rats that were exposed neonatally to various concentrations of BPA showed a significant increase in post-implantation loss and a decrease in litter size. There were significant changes in sperm count along with hormonal imbalances in the rats exposed neonatally to BPA. The 2.4 microg dose (400 microg/kg bw) of BPA was determined as the lowest dose that was capable of impairing male fertility. A significant reduction in the expression of Cx-43 (PND 45 and 90) and increases in the expression of N-cadherin (PND 45 and 90) and ZO-1 (PND 90) were observed in the testes of rats exposed neonatally to effective dose of BPA. Interestingly, there was an altered expression pattern of Cx43 amongst the sloughed cells in the testes of the experimental rats as compared to controls. Neonatal exposure of BPA to rats impairs their fertility and has the potential to induce perturbations in SCJP. These perturbations may be one of the contributing factors that lead to impairments in spermatogenesis in the exposed animals and can be used as potential biomarkers to study BPA-induced effects on testes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bisphenol A may cause testosterone reduction by adversely affecting both testis and pituitary systems similar to estradiol.

            Bisphenol A (BPA) causes reproductive toxicities, but the mechanisms are still unclear. In the present study, we sought to clarify these mechanisms in comparison with those of 17beta-estradiol (E2). Prepubertal Wistar/ST male rats (4 weeks old) were subcutaneously administered BPA (0, 20, 100 and 200 mg/kg/day) or E2 (10 and 100 microg/kg/day) for 6 weeks. Both BPA and E2 treatments decreased plasma and testicular testosterone levels, and plasma luteinizing hormone (LH), but not E2 and follicle-stimulating hormone levels, though E2 treatment increased its plasma level. In relation to the decreased testosterone levels, BPA and E2 decreased expressions of steroidogenic enzymes and cholesterol carrier protein in Leydig cells. Thus, decreased testosterone levels in plasma might have resulted from decreased expressions of these enzymes and protein as well as from decreased plasma LH levels. Interestingly, the changes in steroidogenic enzymes and carrier protein were observed at lower levels of exposure to BPA or E2 than those inhibiting plasma LH levels. Microscopically, 200 mg/kg BPA and 100 microg/kg E2 significantly decreased Leydig cell numbers in the testis. In addition, BPA and E2 also decreased expression of estrogen receptor alpha-mRNA, which might be related to the decreased numbers of Leydig cells. Thus, BPA directly affects not only the Leydig cells but also the pituitary gland, but the former may be impaired at lower exposure concentrations than the latter. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Lycium barbarum polysaccharides: Protective effects against heat-induced damage of rat testes and H2O2-induced DNA damage in mouse testicular cells and beneficial effect on sexual behavior and reproductive function of hemicastrated rats.

              Lycium barbarum, a famous Chinese medicinal herb, has a long history of use as a traditional remedy for male infertility. Polysaccharides are the most important functional constituent in L. barbarum fruits. We systematically investigated the effect of L. barbarum polysaccharides (LBP) on rat testis damage induced by a physical factor (43 degrees C heat exposure), on DNA damage of mouse testicular cells induced by a chemical factor (H2O2), and on sexual behavior and reproductive function of hemicastrated male rats. The results showed that LBP provided a protective effect against the testicular tissue damage induced by heat exposure. When compared with negative control, a suitable concentration of LBP significantly increased testis and epididymis weights, improved superoxide dismutase (SOD) activity, and raised sexual hormone levels in the damaged rat testes. LBP had a dose-dependent protective effect against DNA oxidative damage of mouse testicular cells induced by H2O2. LBP improved the copulatory performance and reproductive function of hemicastrated male rats, such as shortened penis erection latency and mount latency, regulated secretion of sexual hormones and increased hormone levels, raised accessory sexual organ weights, and improved sperm quantity and quality. The present findings support the folk reputation of L. barbarum fruits as an aphrodisiac and fertility-facilitating agent, and provide scientific evidence for a basis for the extensive use of L. barbarum fruits as a traditional remedy for male infertility in China.
                Bookmark

                Author and article information

                Journal
                Evid Based Complement Alternat Med
                Evid Based Complement Alternat Med
                ECAM
                Evidence-based Complementary and Alternative Medicine : eCAM
                Hindawi Publishing Corporation
                1741-427X
                1741-4288
                2013
                26 December 2013
                26 December 2013
                : 2013
                : 690808
                Affiliations
                College of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei, Baoding 071001, China
                Author notes

                Academic Editor: Rainer W. Bussmann

                Author information
                http://orcid.org/0000-0001-9636-7031
                http://orcid.org/0000-0003-4381-6758
                Article
                10.1155/2013/690808
                3888681
                24454506
                e39c5ac6-6aa5-402d-a86c-acb2b6232edc
                Copyright © 2013 Caili Zhang et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 25 July 2013
                : 27 November 2013
                : 27 November 2013
                Funding
                Funded by: http://dx.doi.org/10.13039/501100001809 National Natural Science Foundation of China
                Award ID: 31072164
                Categories
                Research Article

                Complementary & Alternative medicine
                Complementary & Alternative medicine

                Comments

                Comment on this article