4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Open problems in human trait genetics

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Genetic studies of human traits have revolutionized our understanding of the variation between individuals, and yet, the genetics of most traits is still poorly understood. In this review, we highlight the major open problems that need to be solved, and by discussing these challenges provide a primer to the field. We cover general issues such as population structure, epistasis and gene-environment interactions, data-related issues such as ancestry diversity and rare genetic variants, and specific challenges related to heritability estimates, genetic association studies, and polygenic risk scores. We emphasize the interconnectedness of these problems and suggest promising avenues to address them.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s13059-022-02697-9.

          Related collections

          Most cited references101

          • Record: found
          • Abstract: found
          • Article: not found

          Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology

          The American College of Medical Genetics and Genomics (ACMG) previously developed guidance for the interpretation of sequence variants. 1 In the past decade, sequencing technology has evolved rapidly with the advent of high-throughput next generation sequencing. By adopting and leveraging next generation sequencing, clinical laboratories are now performing an ever increasing catalogue of genetic testing spanning genotyping, single genes, gene panels, exomes, genomes, transcriptomes and epigenetic assays for genetic disorders. By virtue of increased complexity, this paradigm shift in genetic testing has been accompanied by new challenges in sequence interpretation. In this context, the ACMG convened a workgroup in 2013 comprised of representatives from the ACMG, the Association for Molecular Pathology (AMP) and the College of American Pathologists (CAP) to revisit and revise the standards and guidelines for the interpretation of sequence variants. The group consisted of clinical laboratory directors and clinicians. This report represents expert opinion of the workgroup with input from ACMG, AMP and CAP stakeholders. These recommendations primarily apply to the breadth of genetic tests used in clinical laboratories including genotyping, single genes, panels, exomes and genomes. This report recommends the use of specific standard terminology: ‘pathogenic’, ‘likely pathogenic’, ‘uncertain significance’, ‘likely benign’, and ‘benign’ to describe variants identified in Mendelian disorders. Moreover, this recommendation describes a process for classification of variants into these five categories based on criteria using typical types of variant evidence (e.g. population data, computational data, functional data, segregation data, etc.). Because of the increased complexity of analysis and interpretation of clinical genetic testing described in this report, the ACMG strongly recommends that clinical molecular genetic testing should be performed in a CLIA-approved laboratory with results interpreted by a board-certified clinical molecular geneticist or molecular genetic pathologist or equivalent.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            An Integrated Encyclopedia of DNA Elements in the Human Genome

            Summary The human genome encodes the blueprint of life, but the function of the vast majority of its nearly three billion bases is unknown. The Encyclopedia of DNA Elements (ENCODE) project has systematically mapped regions of transcription, transcription factor association, chromatin structure, and histone modification. These data enabled us to assign biochemical functions for 80% of the genome, in particular outside of the well-studied protein-coding regions. Many discovered candidate regulatory elements are physically associated with one another and with expressed genes, providing new insights into the mechanisms of gene regulation. The newly identified elements also show a statistical correspondence to sequence variants linked to human disease, and can thereby guide interpretation of this variation. Overall the project provides new insights into the organization and regulation of our genes and genome, and an expansive resource of functional annotations for biomedical research.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              UK Biobank: An Open Access Resource for Identifying the Causes of a Wide Range of Complex Diseases of Middle and Old Age

              Cathie Sudlow and colleagues describe the UK Biobank, a large population-based prospective study, established to allow investigation of the genetic and non-genetic determinants of the diseases of middle and old age.
                Bookmark

                Author and article information

                Contributors
                nadav.brandes@mail.huji.ac.il
                Journal
                Genome Biol
                Genome Biol
                Genome Biology
                BioMed Central (London )
                1474-7596
                1474-760X
                20 June 2022
                20 June 2022
                2022
                : 23
                : 131
                Affiliations
                [1 ]GRID grid.9619.7, ISNI 0000 0004 1937 0538, School of Computer Science and Engineering, , The Hebrew University of Jerusalem, ; Jerusalem, Israel
                [2 ]GRID grid.38142.3c, ISNI 000000041936754X, Department of Epidemiology, , Harvard T.H. Chan School of Public Health, ; Boston, MA USA
                [3 ]GRID grid.9619.7, ISNI 0000 0004 1937 0538, Department of Biological Chemistry, , The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, ; Jerusalem, Israel
                Author information
                http://orcid.org/0000-0002-0510-2546
                Article
                2697
                10.1186/s13059-022-02697-9
                9208223
                35725481
                e38ae9ba-431d-4980-aa06-b4e7d1f8ac41
                © The Author(s) 2022

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 26 September 2021
                : 30 May 2022
                Funding
                Funded by: Israel Science Foundation (ISF)
                Award ID: 2753/20
                Award Recipient :
                Categories
                Review
                Custom metadata
                © The Author(s) 2022

                Genetics
                statistical genetics,human phenotypes,complex human traits,gwas,genome-wide association studies,prs,polygenic risk scores,heritability,missing heritability,population structure,diversity,rare variants,gxg,epistatis,non-additive genetic effects,gxe,gene-environment interactions,linkage disequilibrium,causal variants,recessive effects

                Comments

                Comment on this article