21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Docetaxel-Loaded Chitosan Microspheres as a Lung Targeted Drug Delivery System: In Vitro and in Vivo Evaluation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The aim of this study was to prepare docetaxel-loaded chitosan microspheres and to evaluate their in vitro and in vivo characteristics. Glutaraldehyde crosslinked microspheres were prepared using a water-in-oil emulsification method, and characterized in terms of the morphological examination, particle size distribution, encapsulation ratio, drug-loading coefficient and in vitro release. Pharmacokinetics and biodistribution studies were used to evaluate that microspheres have more advantage than the conventional formulations. The emulsion crosslinking method was simple to prepare microspheres and easy to scale up. The formed microspheres were spherical in shape, with a smooth surface and the size was uniform (9.6 ± 0.8 μm); the encapsulation efficiency and drug loading of prepared microspheres were 88.1% ± 3.5% and 18.7% ± 1.2%, respectively. In vitro release indicated that the DTX microspheres had a well-sustained release efficacy and in vivo studies showed that the microspheres were found to release the drug to a maximum extent in the target tissue (lung). The prepared microspheres were found to possess suitable physico-chemical properties and the particle size range. The sustained release of DTX from microspheres revealed its applicability as drug delivery system to minimize the exposure of healthy tissues while increasing the accumulation of therapeutic drug in target sites.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Cremophor EL: the drawbacks and advantages of vehicle selection for drug formulation.

          Cremophor EL (CrEL) is a formulation vehicle used for various poorly-water soluble drugs, including the anticancer agent paclitaxel (Taxol). In contrast to earlier reports, CrEL is not an inert vehicle, but exerts a range of biological effects, some of which have important clinical implications. Its use has been associated with severe anaphylactoid hypersensitivity reactions, hyperlipidaemia, abnormal lipoprotein patterns, aggregation of erythrocytes and peripheral neuropathy. The pharmacokinetic behaviour of CrEL is dose-independent, although its clearance is highly influenced by duration of the infusion. This is particularly important since CrEL can affect the disposition of various drugs by changing the unbound drug concentration through micellar encapsulation. In addition, it has been shown that CrEL, as an integral component of paclitaxel chemotherapy, modifies the toxicity profile of certain anticancer agents given concomitantly, by mechanisms other than kinetic interference. A clear understanding of the biological and pharmacological role of CrEL is essential to help oncologists avoid side-effects associated with the use of paclitaxel or other agents using this vehicle. With the present development of various new anticancer agents, it is recommended that alternative formulation approaches should be pursued to allow a better control of the toxicity of the treatment and the pharmacological interactions related to the use of CrEL.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Mechanism of action of taxol.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              PLA/PLGA nanoparticles for sustained release of docetaxel.

              This study investigates the potentiality of nanosphere colloidal suspensions as sustained release systems for intravenous administration of docetaxel (DTX). Nanospheres were prepared by solvent displacement method using polylactic acids (PLA) at different molecular weight and polylactic-co-glycolic (PLGA) as biodegradable matrices. The systems were characterized by light scattering analysis for their mean size, size distribution and zeta potential and by scanning electron microscopy (SEM) for surface morphology. The average diameters of the nanoparticles ranged from 100 to 200 nm. Negative zeta potential values were observed for all systems, particularly the nanospheres produced with the lowest molecular weight PLA showed a zeta potential value of -28mV. Differential scanning calorimetry analysis (DSC) suggested that DTX was molecularly dispersed in the polymeric matrices. A biphasic release of DTX was observed for all colloidal suspensions, after a burst effect in which about 50% (w/w) of the loaded drug was released a sustained release profile for about 10 days was observed. To evaluate the influence of the polymeric carrier on the interaction of DTX with biological membranes, we performed an in vitro study using lipid vesicles made of dipalmitoylphosphatidylcholine (DPPC) as a biomembrane model. DSC was used as a simple and not invasive technique of analysis. DTX produced a depression of DPPC pretransition peak, no variation of the main phase transition temperature and a significative increase of DeltaH value, showing a superficial penetration of the drug into DPPC bilayer. Kinetic experiments demonstrated that the release process of DTX form nanospheres is affected by the molecular weight of the employed polymers.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                Molecular Diversity Preservation International (MDPI)
                1422-0067
                March 2014
                26 February 2014
                : 15
                : 3
                : 3519-3532
                Affiliations
                [1 ]Department of Thoracic surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zheng Min Road, Yangpu District, Shanghai 200433, China; E-Mail: wanghao21384313@ 123456163.com
                [2 ]Department of Thoracic surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gong Wei Road, Hui Nan Town, Pudong, Shanghai 201399, China; E-Mail: xyd927927@ 123456163.com
                Author notes
                [†]

                These authors contributed equally to this work.

                [* ]Author to whom correspondence should be addressed; E-Mail: zhoux011@ 123456163.com ; Tel.: +86-21-6511-5006 (ext. 123); Fax: +86-21-6511-5006.
                Article
                ijms-15-03519
                10.3390/ijms15033519
                3975351
                24577314
                e3729da5-f0b4-4cdb-89b8-bf940d90d002
                © 2014 by the authors; licensee MDPI, Basel, Switzerland

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                : 24 December 2013
                : 10 February 2014
                : 12 February 2014
                Categories
                Article

                Molecular biology
                docetaxel,microspheres,release,pharmacokinetics,biodistribution
                Molecular biology
                docetaxel, microspheres, release, pharmacokinetics, biodistribution

                Comments

                Comment on this article