0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Inhibition of Endothelial NOTCH1 Signaling Attenuates Inflammation by Reducing Cytokine-Mediated Histone Acetylation at Inflammatory Enhancers

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Gene Ontology: tool for the unification of biology

          Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            How leukocytes cross the vascular endothelium.

            Immune responses depend on the ability of leukocytes to move from the circulation into tissue. This is enabled by mechanisms that guide leukocytes to the right exit sites and allow them to cross the barrier of the blood vessel wall. This process is regulated by a concerted action between endothelial cells and leukocytes, whereby endothelial cells activate leukocytes and direct them to extravasation sites, and leukocytes in turn instruct endothelial cells to open a path for transmigration. This Review focuses on recently described mechanisms that control and open exit routes for leukocytes through the endothelial barrier.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              NF-κB directs dynamic super enhancer formation in inflammation and atherogenesis.

              Proinflammatory stimuli elicit rapid transcriptional responses via transduced signals to master regulatory transcription factors. To explore the role of chromatin-dependent signal transduction in the atherogenic inflammatory response, we characterized the dynamics, structure, and function of regulatory elements in the activated endothelial cell epigenome. Stimulation with tumor necrosis factor alpha prompted a dramatic and rapid global redistribution of chromatin activators to massive de novo clustered enhancer domains. Inflammatory super enhancers formed by nuclear factor-kappa B accumulate at the expense of immediately decommissioned, basal endothelial super enhancers, despite persistent histone hyperacetylation. Mass action of enhancer factor redistribution causes momentous swings in transcriptional initiation and elongation. A chemical genetic approach reveals a requirement for BET bromodomains in communicating enhancer remodeling to RNA Polymerase II and orchestrating the transition to the inflammatory cell state, demonstrated in activated endothelium and macrophages. BET bromodomain inhibition abrogates super enhancer-mediated inflammatory transcription, atherogenic endothelial responses, and atherosclerosis in vivo.
                Bookmark

                Author and article information

                Journal
                Arteriosclerosis, Thrombosis, and Vascular Biology
                Arterioscler Thromb Vasc Biol.
                Ovid Technologies (Wolters Kluwer Health)
                1079-5642
                1524-4636
                April 2018
                April 2018
                : 38
                : 4
                : 854-869
                Affiliations
                [1 ]From the Department of Pathology, Oslo University Hospital Rikshospitalet (L.l.C.P., R.J.E., S.K., T.E.S.-N., A.R., M.S., J.W., M.K., E.B., O.S., H.S., G.H., E.S., J.H.), Department of Pathology, Institute for Clinical Medical Sciences (H.S., G.H.) and Department of Molecular Medicine, Institute for Basal Medical Sciences (A.S., P.C.), University of Oslo, Norway; Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, University of Münster, Germany (R.D.-H., M.E., R.B., R...
                Article
                10.1161/ATVBAHA.117.310388
                29449332
                e368334f-1df0-4e90-9667-a8c8826e3fd5
                © 2018
                History

                Comments

                Comment on this article