5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Gas–liquid segmented flow microwave-assisted synthesis of MOF-74(Ni) under moderate pressures

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A representation of the continuous flow microwave-assisted synthesis of the metal organic framework, MOF-74(Ni). Precursor solutions flow through a microwave nucleation zone leading to the formation of MOF-74(Ni).

          Abstract

          The metal organic framework, MOF-74(Ni), was synthesized in a continuous flow microwave-assisted reactor obtaining a high space-time yield (~90 g h −1 L −1) and 96.5% conversion of reagents. Separation of the nucleation and growth steps was performed by using uniform and rapid microwave heating to induce nucleation, which allowed a substantial increase in conversion for shorter reaction times under mild pressure. High yields were achieved in minutes, as opposed to days for typical batch syntheses, with excellent control over the material's properties due to more uniform nucleation, and the separation of the nucleation and growth steps. Optimization of the microwave reactor parameters led to improvements in MOF-74(Ni) crystallinity, reagent conversion, and production rates. Differences in MOF-74(Ni) crystallinity were observed as smaller grains were formed when higher microwave zone temperatures were used. Crystallinity differences led to different final adsorption properties and surface areas. Herein we show that a continuous high space-time yield synthesis of MOF-74(Ni) allows control over nucleation using microwave heating.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: not found
          • Article: not found

          Metal-organic framework materials as chemical sensors.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hydrogen storage in microporous metal-organic frameworks.

            Metal-organic framework-5 (MOF-5) of composition Zn4O(BDC)3 (BDC = 1,4-benzenedicarboxylate) with a cubic three-dimensional extended porous structure adsorbed hydrogen up to 4.5 weight percent (17.2 hydrogen molecules per formula unit) at 78 kelvin and 1.0 weight percent at room temperature and pressure of 20 bar. Inelastic neutron scattering spectroscopy of the rotational transitions of the adsorbed hydrogen molecules indicates the presence of two well-defined binding sites (termed I and II), which we associate with hydrogen binding to zinc and the BDC linker, respectively. Preliminary studies on topologically similar isoreticular metal-organic framework-6 and -8 (IRMOF-6 and -8) having cyclobutylbenzene and naphthalene linkers, respectively, gave approximately double and quadruple (2.0 weight percent) the uptake found for MOF-5 at room temperature and 10 bar.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Applications of metal-organic frameworks in heterogeneous supramolecular catalysis.

              This review summarizes the use of metal-organic frameworks (MOFs) as a versatile supramolecular platform to develop heterogeneous catalysts for a variety of organic reactions, especially for liquid-phase reactions. Following a background introduction about catalytic relevance to various metal-organic materials, crystal engineering of MOFs, characterization and evaluation methods of MOF catalysis, we categorize catalytic MOFs based on the types of active sites, including coordinatively unsaturated metal sites (CUMs), metalloligands, functional organic sites (FOS), as well as metal nanoparticles (MNPs) embedded in the cavities. Throughout the review, we emphasize the incidental or deliberate formation of active sites, the stability, heterogeneity and shape/size selectivity for MOF catalysis. Finally, we briefly introduce their relevance into photo- and biomimetic catalysis, and compare MOFs with other typical porous solids such as zeolites and mesoporous silica with regard to their different attributes, and provide our view on future trends and developments in MOF-based catalysis.
                Bookmark

                Author and article information

                Journal
                CRECF4
                CrystEngComm
                CrystEngComm
                Royal Society of Chemistry (RSC)
                1466-8033
                2015
                2015
                : 17
                : 29
                : 5502-5510
                Affiliations
                [1 ]Oregon State University
                [2 ]School of Chemical, Biological and Environmental Engineering
                [3 ]Corvallis, USA
                [4 ]Pacific Northwest National Laboratory
                [5 ]MSIN K4-18
                [6 ]Richland, USA
                Article
                10.1039/C5CE00848D
                e35d1ae7-9903-4343-9c7a-8458ddff693d
                © 2015
                History

                Comments

                Comment on this article