10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Spheroid model for functional osteogenic evaluation of human adipose derived stem cells : Osteogenesis of Adipose Stem Cell Spheroids

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="P1">3D culture systems have the ability to mimic the natural microenvironment by allowing better cell-cell interactions. We have prepared an <i>in vitro</i> 3D osteogenic cell culture model using human adipose derived stem cells (hASCs) cultured atop recombinant elastin-like polypeptide (ELP) conjugated to a charged polyelectrolyte, polyethyleneimine (PEI). We demonstrate that hASCs cultured atop the ELP-PEI coated tissue culture polystyrene (TCPS) formed 3D spheroids and exhibited superior differentiation toward osteogenic lineage compared to the traditional two dimensional (2D) monolayer formed atop uncoated TCPS. Live/dead viability assay confirmed &gt;90% live cells at the end of the 3-week culture period. Over the same culture period, higher protein content was observed in 2D monolayer than 3D spheroids, as the 2D environment allowed continued proliferation, while 3D spheroids underwent contact-inhibited growth arrest. The normalized alkaline phosphatase (ALP) activity, which is an indicator for early osteogenic differentiation was higher for 3D spheroids. The normalized osteocalcin (OCN) production, which is an indicator for osteogenic maturation was also higher for 3D spheroids while 2D monolayer had no noticeable OCN production. On day 22, increased Alizarin red uptake by 3D spheroids showed greater mineralization activity than 2D monolayer. Taken together, these results indicate a superior osteogenic differentiation of hASCs in 3D spheroid culture atop ELP-PEI coated TCPS surfaces than the 2D monolayer formed on uncoated TCPS surfaces. Such enhanced osteogenesis in 3D spheroid stem cell culture may serve as an alternative to 2D culture by providing a better microenvironment for the enhanced cellular functions and interactions in bone tissue engineering. </p>

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Capturing complex 3D tissue physiology in vitro.

          The emergence of tissue engineering raises new possibilities for the study of complex physiological and pathophysiological processes in vitro. Many tools are now available to create 3D tissue models in vitro, but the blueprints for what to make have been slower to arrive. We discuss here some of the 'design principles' for recreating the interwoven set of biochemical and mechanical cues in the cellular microenvironment, and the methods for implementing them. We emphasize applications that involve epithelial tissues for which 3D models could explain mechanisms of disease or aid in drug development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Recent advances in three-dimensional multicellular spheroid culture for biomedical research.

            Many types of mammalian cells can aggregate and differentiate into 3-D multicellular spheroids when cultured in suspension or a nonadhesive environment. Compared to conventional monolayer cultures, multicellular spheroids resemble real tissues better in terms of structural and functional properties. Multicellular spheroids formed by transformed cells are widely used as avascular tumor models for metastasis and invasion research and for therapeutic screening. Many primary or progenitor cells on the other hand, show significantly enhanced viability and functional performance when grown as spheroids. Multicellular spheroids in this aspect are ideal building units for tissue reconstruction. Here we review the current understanding of multicellular spheroid formation mechanisms, their biomedical applications, and recent advances in spheroid culture, manipulation, and analysis techniques.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Directed differentiation of telencephalic precursors from embryonic stem cells.

              We demonstrate directed differentiation of telencephalic precursors from mouse embryonic stem (ES) cells using optimized serum-free suspension culture (SFEB culture). Treatment with Wnt and Nodal antagonists (Dkk1 and LeftyA) during the first 5 d of SFEB culture causes nearly selective neural differentiation in ES cells ( approximately 90%). In the presence of Dkk1, with or without LeftyA, SFEB induces efficient generation ( approximately 35%) of cells expressing telencephalic marker Bf1. Wnt3a treatment during the late culture period increases the pallial telencephalic population (Pax6(+) cells yield up to 75% of Bf1(+) cells), whereas Shh promotes basal telencephalic differentiation (into Nkx2.1(+) and/or Islet1/2(+) cells) at the cost of pallial telencephalic differentiation. Thus, in the absence of caudalizing signals, floating aggregates of ES cells generate naive telencephalic precursors that acquire subregional identities by responding to extracellular patterning signals.
                Bookmark

                Author and article information

                Journal
                Journal of Biomedical Materials Research Part A
                J. Biomed. Mater. Res.
                Wiley
                15493296
                April 2017
                April 2017
                February 02 2017
                : 105
                : 4
                : 1230-1236
                Affiliations
                [1 ]Department of Biomedical Materials Science; School of Dentistry, University of Mississippi Medical Center; Jackson Mississippi 39216
                Article
                10.1002/jbm.a.35974
                5373475
                27943608
                e349813c-62e1-4506-b4ad-918d038315ac
                © 2017

                http://doi.wiley.com/10.1002/tdm_license_1

                http://onlinelibrary.wiley.com/termsAndConditions

                History

                Comments

                Comment on this article