22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The effects of a variable temperature regime on the physiology of the reef-building coral Seriatopora hystrix: results from a laboratory-based reciprocal transplant.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To understand the effects of global climate change on reef-building corals, a thorough investigation of their physiological mechanisms of acclimatization is warranted. However, static temperature manipulations may underestimate the thermal complexity of the reefs in which many corals live. For instance, corals of Houbihu, Taiwan, experience changes in temperature of up to 10°C over the course of a day during spring-tide upwelling events. To better understand the phenotypic plasticity of these corals, a laboratory-based experiment was conducted whereby specimens of Seriatopora hystrix from an upwelling reef (Houbihu) and conspecifics from a non-upwelling reef (Houwan) were exposed to both a stable seawater temperature (26°C) regime and a regime characterized by a 6°C fluctuation (23-29°C) over a 12 h period for 7 days. A suite of physiological and molecular parameters was measured in samples of both treatments, as well as in experimental controls, to determine site of origin (SO) and temperature treatment (TT) responses. Only chlorophyll a (chl a) concentration and growth demonstrated the hypothesized trend of higher levels when exposed to a TT that mimicked SO conditions. In contrast, chl a, maximum dark-adapted quantum yield of photosystem II (F(v)/F(m)), and Symbiodinium ribulose-1,5-bisphosphate carboxylase/oxygenase (rbcL), photosystem I (psI, subunit III) and phosphoglycolate phosphatase (pgpase) mRNA expression demonstrated significant TT effects. Specifically, levels of these response variables were higher in samples exposed to a variable temperature regime, suggesting that S. hystrix may acclimate to fluctuating temperatures by increasing its capacity for photosynthesis.

          Related collections

          Author and article information

          Journal
          J Exp Biol
          The Journal of experimental biology
          The Company of Biologists
          1477-9145
          0022-0949
          Dec 01 2012
          : 215
          : Pt 23
          Affiliations
          [1 ] National Museum of Marine Biology and Aquarium, Checheng, Pingtung, Taiwan, ROC. andersonblairmayfield@gmail.com
          Article
          jeb.071688
          10.1242/jeb.071688
          22933614
          e3235622-7c58-478f-816b-cf99250b1e22
          History

          Comments

          Comment on this article