6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Expression of Telomeric Repeat–Containing RNA Decreases in Sarcopenia and Increases after Exercise and Nutrition Intervention

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sarcopenia is defined as aging-related loss of muscle mass and function. Telomere length in chromosomes shortens with age and is modulated by telomeric repeat-containing RNA (TERRA). This study aimed to explore the impact of aging and sarcopenia on telomere length and TERRA expression, and changes following strengthening exercise and nutrition intervention (supplement of branched-chain amino acids, calcium and vitamin D3) for 12 weeks in the sarcopenic population. Older adults (≥65 years old) were divided into non-sarcopenic controls ( n = 36) and sarcopenic individuals ( n = 36) after measurement of grip strength and body composition. The relative telomere length of leukocytes in all research participants was evaluated using the T/S ratio (telomere/single copy gene), and relative TERRA expression of leukocytes was determined by reverse-transcription qPCR (RT-qPCR). Generalized estimating equation (GEE) was used to analyze the influence of sarcopenia and intervention on the outcomes. There was no significant difference in telomere length between control subjects and participants with sarcopenia. TERRA expression was lower in sarcopenic participants compared to that in non-sarcopenic controls (5.18 ± 2.98 vs. 2.51 ± 1.89; p < 0.001). In the sarcopenic group, intervention significantly increased TERRA expression, but not telomere length. The GEE analysis demonstrated that TERRA expression was negatively associated with sarcopenia (β coefficient = −2.705, p < 0.001) but positively associated with intervention (β coefficient = 1.599, p = 0.023). Sarcopenia is associated with a decrease in TERRA expression in leukocytes. Rebound TERRA expression (returning to the level similar to the non-sarcopenic controls) was observed in the sarcopenic group after exercise and nutrition intervention. Future studies are warranted to examine the potential of TERRA as a biomarker for sarcopenia and its subsequent responses to intervention.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Sarcopenia: European consensus on definition and diagnosis

          The European Working Group on Sarcopenia in Older People (EWGSOP) developed a practical clinical definition and consensus diagnostic criteria for age-related sarcopenia. EWGSOP included representatives from four participant organisations, i.e. the European Geriatric Medicine Society, the European Society for Clinical Nutrition and Metabolism, the International Association of Gerontology and Geriatrics—European Region and the International Association of Nutrition and Aging. These organisations endorsed the findings in the final document. The group met and addressed the following questions, using the medical literature to build evidence-based answers: (i) What is sarcopenia? (ii) What parameters define sarcopenia? (iii) What variables reflect these parameters, and what measurement tools and cut-off points can be used? (iv) How does sarcopenia relate to cachexia, frailty and sarcopenic obesity? For the diagnosis of sarcopenia, EWGSOP recommends using the presence of both low muscle mass + low muscle function (strength or performance). EWGSOP variously applies these characteristics to further define conceptual stages as ‘presarcopenia’, ‘sarcopenia’ and ‘severe sarcopenia’. EWGSOP reviewed a wide range of tools that can be used to measure the specific variables of muscle mass, muscle strength and physical performance. Our paper summarises currently available data defining sarcopenia cut-off points by age and gender; suggests an algorithm for sarcopenia case finding in older individuals based on measurements of gait speed, grip strength and muscle mass; and presents a list of suggested primary and secondary outcome domains for research. Once an operational definition of sarcopenia is adopted and included in the mainstream of comprehensive geriatric assessment, the next steps are to define the natural course of sarcopenia and to develop and define effective treatment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sarcopenia in Asia: consensus report of the Asian Working Group for Sarcopenia.

            Sarcopenia, a newly recognized geriatric syndrome, is characterized by age-related decline of skeletal muscle plus low muscle strength and/or physical performance. Previous studies have confirmed the association of sarcopenia and adverse health outcomes, such as falls, disability, hospital admission, long term care placement, poorer quality of life, and mortality, which denotes the importance of sarcopenia in the health care for older people. Despite the clinical significance of sarcopenia, the operational definition of sarcopenia and standardized intervention programs are still lacking. It is generally agreed by the different working groups for sarcopenia in the world that sarcopenia should be defined through a combined approach of muscle mass and muscle quality, however, selecting appropriate diagnostic cutoff values for all the measurements in Asian populations is challenging. Asia is a rapidly aging region with a huge population, so the impact of sarcopenia to this region is estimated to be huge as well. Asian Working Group for Sarcopenia (AWGS) aimed to promote sarcopenia research in Asia, and we collected the best available evidences of sarcopenia researches from Asian countries to establish the consensus for sarcopenia diagnosis. AWGS has agreed with the previous reports that sarcopenia should be described as low muscle mass plus low muscle strength and/or low physical performance, and we also recommend outcome indicators for further researches, as well as the conditions that sarcopenia should be assessed. In addition to sarcopenia screening for community-dwelling older people, AWGS recommends sarcopenia assessment in certain clinical conditions and healthcare settings to facilitate implementing sarcopenia in clinical practice. Moreover, we also recommend cutoff values for muscle mass measurements (7.0 kg/m(2) for men and 5.4 kg/m(2) for women by using dual X-ray absorptiometry, and 7.0 kg/m(2) for men and 5.7 kg/m(2) for women by using bioimpedance analysis), handgrip strength (<26 kg for men and <18 kg for women), and usual gait speed (<0.8 m/s). However, a number of challenges remained to be solved in the future. Asia is made up of a great number of ethnicities. The majority of currently available studies have been published from eastern Asia, therefore, more studies of sarcopenia in south, southeastern, and western Asia should be promoted. On the other hand, most Asian studies have been conducted in a cross-sectional design and few longitudinal studies have not necessarily collected the commonly used outcome indicators as other reports from Western countries. Nevertheless, the AWGS consensus report is believed to promote more Asian sarcopenia research, and most important of all, to focus on sarcopenia intervention studies and the implementation of sarcopenia in clinical practice to improve health care outcomes of older people in the communities and the healthcare settings in Asia. Copyright © 2014 American Medical Directors Association, Inc. Published by Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Oxidative Stress: Harms and Benefits for Human Health

              Oxidative stress is a phenomenon caused by an imbalance between production and accumulation of oxygen reactive species (ROS) in cells and tissues and the ability of a biological system to detoxify these reactive products. ROS can play, and in fact they do it, several physiological roles (i.e., cell signaling), and they are normally generated as by-products of oxygen metabolism; despite this, environmental stressors (i.e., UV, ionizing radiations, pollutants, and heavy metals) and xenobiotics (i.e., antiblastic drugs) contribute to greatly increase ROS production, therefore causing the imbalance that leads to cell and tissue damage (oxidative stress). Several antioxidants have been exploited in recent years for their actual or supposed beneficial effect against oxidative stress, such as vitamin E, flavonoids, and polyphenols. While we tend to describe oxidative stress just as harmful for human body, it is true as well that it is exploited as a therapeutic approach to treat clinical conditions such as cancer, with a certain degree of clinical success. In this review, we will describe the most recent findings in the oxidative stress field, highlighting both its bad and good sides for human health.
                Bookmark

                Author and article information

                Journal
                Nutrients
                Nutrients
                nutrients
                Nutrients
                MDPI
                2072-6643
                08 December 2020
                December 2020
                : 12
                : 12
                : 3766
                Affiliations
                [1 ]Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Bei-Hu Branch, Taipei 100, Taiwan; kvchang011@ 123456gmail.com (K.-V.C.); wwtaustin@ 123456yahoo.com.tw (W.-T.W.)
                [2 ]Community and Geriatric Medicine Research Center, National Taiwan University Hospital, Bei-Hu Branch, Taipei 108, Taiwan; bretthuang@ 123456ntu.edu.tw
                [3 ]Department of Physical Medicine and Rehabilitation, National Taiwan University College of Medicine, Taipei 100, Taiwan
                [4 ]Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 106, Taiwan; r07b43028@ 123456ntu.edu.tw (Y.-C.C.); Owen11533@ 123456gmail.com (H.-J.S.)
                [5 ]Department of Family Medicine, National Taiwan University College of Medicine, Taipei 100, Taiwan
                [6 ]Health Science and Wellness Center, National Taiwan University, Taipei 106, Taiwan
                Author notes
                [* ]Correspondence: cchu2017@ 123456ntu.edu.tw (H.-P.C.); dshan1121@ 123456yahoo.com.tw (D.-S.H.); Tel.: +886-233-662487 (H.-P.C.); +886-223-717101(ext. 5001) (D.-S.H.)
                Author information
                https://orcid.org/0000-0002-7558-5651
                https://orcid.org/0000-0002-6029-5520
                https://orcid.org/0000-0001-7642-8060
                Article
                nutrients-12-03766
                10.3390/nu12123766
                7762552
                33302352
                e3228f64-2e3b-40a0-867e-aa9e9341fcc8
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 19 November 2020
                : 05 December 2020
                Categories
                Article

                Nutrition & Dietetics
                sarcopenia,telomere,terra,exercise,nutrition
                Nutrition & Dietetics
                sarcopenia, telomere, terra, exercise, nutrition

                Comments

                Comment on this article