4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Refining Late-Holocene environmental changes of the Akko coastal plain and its impacts on the settlement and anchorage patterns of Tel Akko (Israel)

      , , , , ,
      Marine Geology
      Elsevier BV

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references84

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          THE INTCAL20 NORTHERN HEMISPHERE RADIOCARBON AGE CALIBRATION CURVE (0–55 CAL kBP)

          Radiocarbon ( 14 C) ages cannot provide absolutely dated chronologies for archaeological or paleoenvironmental studies directly but must be converted to calendar age equivalents using a calibration curve compensating for fluctuations in atmospheric 14 C concentration. Although calibration curves are constructed from independently dated archives, they invariably require revision as new data become available and our understanding of the Earth system improves. In this volume the international 14 C calibration curves for both the Northern and Southern Hemispheres, as well as for the ocean surface layer, have been updated to include a wealth of new data and extended to 55,000 cal BP. Based on tree rings, IntCal20 now extends as a fully atmospheric record to ca. 13,900 cal BP. For the older part of the timescale, IntCal20 comprises statistically integrated evidence from floating tree-ring chronologies, lacustrine and marine sediments, speleothems, and corals. We utilized improved evaluation of the timescales and location variable 14 C offsets from the atmosphere (reservoir age, dead carbon fraction) for each dataset. New statistical methods have refined the structure of the calibration curves while maintaining a robust treatment of uncertainties in the 14 C ages, the calendar ages and other corrections. The inclusion of modeled marine reservoir ages derived from a three-dimensional ocean circulation model has allowed us to apply more appropriate reservoir corrections to the marine 14 C data rather than the previous use of constant regional offsets from the atmosphere. Here we provide an overview of the new and revised datasets and the associated methods used for the construction of the IntCal20 curve and explore potential regional offsets for tree-ring data. We discuss the main differences with respect to the previous calibration curve, IntCal13, and some of the implications for archaeology and geosciences ranging from the recent past to the time of the extinction of the Neanderthals.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sea level and global ice volumes from the Last Glacial Maximum to the Holocene.

            The major cause of sea-level change during ice ages is the exchange of water between ice and ocean and the planet's dynamic response to the changing surface load. Inversion of ∼1,000 observations for the past 35,000 y from localities far from former ice margins has provided new constraints on the fluctuation of ice volume in this interval. Key results are: (i) a rapid final fall in global sea level of ∼40 m in <2,000 y at the onset of the glacial maximum ∼30,000 y before present (30 ka BP); (ii) a slow fall to -134 m from 29 to 21 ka BP with a maximum grounded ice volume of ∼52 × 10(6) km(3) greater than today; (iii) after an initial short duration rapid rise and a short interval of near-constant sea level, the main phase of deglaciation occurred from ∼16.5 ka BP to ∼8.2 ka BP at an average rate of rise of 12 m⋅ka(-1) punctuated by periods of greater, particularly at 14.5-14.0 ka BP at ≥40 mm⋅y(-1) (MWP-1A), and lesser, from 12.5 to 11.5 ka BP (Younger Dryas), rates; (iv) no evidence for a global MWP-1B event at ∼11.3 ka BP; and (v) a progressive decrease in the rate of rise from 8.2 ka to ∼2.5 ka BP, after which ocean volumes remained nearly constant until the renewed sea-level rise at 100-150 y ago, with no evidence of oscillations exceeding ∼15-20 cm in time intervals ≥200 y from 6 to 0.15 ka BP.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              MARINE20—THE MARINE RADIOCARBON AGE CALIBRATION CURVE (0–55,000 CAL BP)

              The concentration of radiocarbon ( 14 C) differs between ocean and atmosphere. Radiocarbon determinations from samples which obtained their 14 C in the marine environment therefore need a marine-specific calibration curve and cannot be calibrated directly against the atmospheric-based IntCal20 curve. This paper presents Marine20, an update to the internationally agreed marine radiocarbon age calibration curve that provides a non-polar global-average marine record of radiocarbon from 0–55 cal kBP and serves as a baseline for regional oceanic variation. Marine20 is intended for calibration of marine radiocarbon samples from non-polar regions; it is not suitable for calibration in polar regions where variability in sea ice extent, ocean upwelling and air-sea gas exchange may have caused larger changes to concentrations of marine radiocarbon. The Marine20 curve is based upon 500 simulations with an ocean/atmosphere/biosphere box-model of the global carbon cycle that has been forced by posterior realizations of our Northern Hemispheric atmospheric IntCal20 14 C curve and reconstructed changes in CO 2 obtained from ice core data. These forcings enable us to incorporate carbon cycle dynamics and temporal changes in the atmospheric 14 C level. The box-model simulations of the global-average marine radiocarbon reservoir age are similar to those of a more complex three-dimensional ocean general circulation model. However, simplicity and speed of the box model allow us to use a Monte Carlo approach to rigorously propagate the uncertainty in both the historic concentration of atmospheric 14 C and other key parameters of the carbon cycle through to our final Marine20 calibration curve. This robust propagation of uncertainty is fundamental to providing reliable precision for the radiocarbon age calibration of marine based samples. We make a first step towards deconvolving the contributions of different processes to the total uncertainty; discuss the main differences of Marine20 from the previous age calibration curve Marine13; and identify the limitations of our approach together with key areas for further work. The updated values for ΔR , the regional marine radiocarbon reservoir age corrections required to calibrate against Marine20, can be found at the data base http://calib.org/marine/ .
                Bookmark

                Author and article information

                Journal
                Marine Geology
                Marine Geology
                Elsevier BV
                00253227
                May 2022
                May 2022
                : 447
                : 106778
                Article
                10.1016/j.margeo.2022.106778
                e2fe2f46-216d-4164-aa29-4655d7e199dc
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article