40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Circulating branched-chain amino acid concentrations are associated with obesity and future insulin resistance in children and adolescents : Branched-chain amino acids and IR in children

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          What is already known about this subject Circulating concentrations of branched-chain amino acids (BCAAs) can affect carbohydrate metabolism in skeletal muscle, and therefore may alter insulin sensitivity. BCAAs are elevated in adults with diet-induced obesity, and are associated with their future risk of type 2 diabetes even after accounting for baseline clinical risk factors. What this study adds Increased concentrations of BCAAs are already present in young obese children and their metabolomic profiles are consistent with increased BCAA catabolism. Elevations in BCAAs in children are positively associated with insulin resistance measured 18 months later, independent of their initial body mass index. Branched-chain amino acid (BCAA) concentrations are elevated in response to overnutrition, and can affect both insulin sensitivity and secretion. Alterations in their metabolism may therefore play a role in the early pathogenesis of type 2 diabetes in overweight children. To determine whether paediatric obesity is associated with elevations in fasting circulating concentrations of BCAAs (isoleucine, leucine and valine), and whether these elevations predict future insulin resistance. Sixty-nine healthy subjects, ages 8-18 years, were enrolled as a cross-sectional cohort. A subset of subjects who were pre- or early-pubertal, ages 8-13 years, were enrolled in a prospective longitudinal cohort for 18 months (n = 17 with complete data). Elevations in the concentrations of BCAAs were significantly associated with body mass index (BMI) Z-score (Spearman's Rho 0.27, P = 0.03) in the cross-sectional cohort. In the subset of subjects that followed longitudinally, baseline BCAA concentrations were positively associated with homeostasis model assessment for insulin resistance measured 18 months later after controlling for baseline clinical factors including BMI Z-score, sex and pubertal stage (P = 0.046). Elevations in the concentrations of circulating BCAAs are significantly associated with obesity in children and adolescents, and may independently predict future insulin resistance. © 2012 The Authors. Pediatric Obesity © 2012 International Association for the Study of Obesity.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: not found
          • Article: not found

          STATISTICAL METHODS FOR ASSESSING AGREEMENT BETWEEN TWO METHODS OF CLINICAL MEASUREMENT

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Homeostasis model assessment: insulin resistance and ?-cell function from fasting plasma glucose and insulin concentrations in man

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp.

              Several methods have been proposed to evaluate insulin sensitivity from the data obtained from the oral glucose tolerance test (OGTT). However, the validity of these indices has not been rigorously evaluated by comparing them with the direct measurement of insulin sensitivity obtained with the euglycemic insulin clamp technique. In this study, we compare various insulin sensitivity indices derived from the OGTT with whole-body insulin sensitivity measured by the euglycemic insulin clamp technique. In this study, 153 subjects (66 men and 87 women, aged 18-71 years, BMI 20-65 kg/m2) with varying degrees of glucose tolerance (62 subjects with normal glucose tolerance, 31 subjects with impaired glucose tolerance, and 60 subjects with type 2 diabetes) were studied. After a 10-h overnight fast, all subjects underwent, in random order, a 75-g OGTT and a euglycemic insulin clamp, which was performed with the infusion of [3-3H]glucose. The indices of insulin sensitivity derived from OGTT data and the euglycemic insulin clamp were compared by correlation analysis. The mean plasma glucose concentration divided by the mean plasma insulin concentration during the OGTT displayed no correlation with the rate of whole-body glucose disposal during the euglycemic insulin clamp (r = -0.02, NS). From the OGTT, we developed an index of whole-body insulin sensitivity (10,000/square root of [fasting glucose x fasting insulin] x [mean glucose x mean insulin during OGTT]), which is highly correlated (r = 0.73, P < 0.0001) with the rate of whole-body glucose disposal during the euglycemic insulin clamp. Previous methods used to derive an index of insulin sensitivity from the OGTT have relied on the ratio of plasma glucose to insulin concentration during the OGTT. Our results demonstrate the limitations of such an approach. We have derived a novel estimate of insulin sensitivity that is simple to calculate and provides a reasonable approximation of whole-body insulin sensitivity from the OGTT.
                Bookmark

                Author and article information

                Journal
                Pediatric Obesity
                Pediatric Obesity
                Wiley
                20476302
                February 2013
                February 2013
                September 07 2012
                : 8
                : 1
                : 52-61
                Affiliations
                [1 ]Program in Nutritional Metabolism and Neuroendocrine Unit; Massachusetts General Hospital and Harvard Medical School; Boston; Massachusetts; USA
                [2 ]Broad Institute of MIT and Harvard; Cambridge; Massachusetts; USA
                Article
                10.1111/j.2047-6310.2012.00087.x
                3519972
                22961720
                e2f1b894-6245-4863-aa21-d16e92a1533e
                © 2012

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article