252
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effect of the DGAT1 inhibitor pradigastat on triglyceride and apoB48 levels in patients with familial chylomicronemia syndrome

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Familial chylomicronemia syndrome (FCS) is a rare lipid disease caused by complete lipoprotein lipase (LPL) deficiency resulting in fasting chylomicronemia and severe hypertriglyceridemia. Inhibition of diacylglycerol acyltransferase 1 (DGAT1), which mediates chylomicron triglyceride (TG) synthesis, is an attractive strategy to reduce TG levels in FCS. In this study we assessed the safety, tolerability and TG-lowering efficacy of the DGAT1 inhibitor pradigastat in patients with FCS.

          Methods

          Six FCS patients were enrolled in an open-label clinical study. Following a 1-week very low fat diet run-in period patients underwent baseline lipid assessments, including a low fat meal tolerance test. Patients then underwent three consecutive 21 day treatment periods (pradigastat at 20, 40 & 10 mg, respectively). Treatment periods were separated by washout periods of ≥4 weeks. Fasting TG levels were assessed weekly through the treatment periods. Postprandial TGs, ApoB48 and lipoprotein lipid content were also monitored.

          Results

          Following once daily oral dosing, steady-state exposure was reached by Day 14. There was an approximately dose proportional increase in pradigastat exposure at studied doses. Pradigastat was associated with a 41% (20 mg) and 70% (40 mg) reduction in fasting triglyceride over 21 days of treatment. The reduction in fasting TG was almost entirely accounted for by a reduction in chylomicron TG. Pradigastat treatment also led to substantial reductions in postprandial TG as well as apo48 (both fasting and postprandial). Pradigastat was safe and well tolerated, with only mild, transient gastrointestinal adverse events.

          Conclusion

          The novel DGAT1 inhibitor pradigastat substantially reduces plasma TG levels in FCS patients, and may be a promising new treatment for this orphan disease.

          Trial registration

          ClinicalTrials.gov identifier NCT01146522.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Gene therapy for lipoprotein lipase deficiency.

          The present review summarizes the clinical development of adeno-associated viral vector (AAV)1-lipoprotein lipase (LPL)S447X gene therapy (alipogene tiparvovec) for lipoprotein lipase deficiency. Lipoprotein lipase deficiency is a rare inherited disease characterized by severe hypertriglyceridaemia, chylomicronaemia and risk of recurrent pancreatitis or other complications. AAV1-LPLS447X gene therapy is based on the rationale that by adding episomal copies of functional LPL genes into muscle cells lacking active LPL, metabolic function could be improved or restored. AAV1-LPLS447X is a nonreplicating and nonintegrating AAV of serotype 1 designed to deliver and express the human LPL gene variant S447X. The clinical development programme for AAV1-LPLS447X consisted of two observational studies, three open-label interventional studies and one case note review analysis. Intramuscular administration of AAV1-LPLS447X was generally well tolerated and was associated with reduction in overall pancreatitis incidence and signs of clinical improvement up to 2 years after administration. Results of interventional studies suggest that markers of postprandial metabolism could be more accurate than fasting plasma triglyceride concentration to monitor the effect of AAV1-LPLS447X . The overall benefit-risk ratio of AAV1-LPLS447X gene therapy appears positive to date, particularly for the patients presenting the highest risk of complications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effect of alipogene tiparvovec (AAV1-LPL(S447X)) on postprandial chylomicron metabolism in lipoprotein lipase-deficient patients.

            Lipoprotein lipase-deficient (LPLD) individuals display marked chylomicronemia and hypertriglyceridemia associated with increased pancreatitis risk. The aim of this study was to determine the effect of i.m. administration of an adeno-associated viral vector (AAV1) for expression of LPL(S447X) in muscle (alipogene tiparvovec, AAV1-LPL(S447X)) on postprandial chylomicron metabolism and on nonesterified fatty acid (NEFA) and glycerol metabolism in LPLD individuals. In an open-label clinical trial (CT-AMT-011-02), LPLD subjects were administered alipogene tiparvovec at a dose of 1 × 10(12) genome copies per kilogram. Two weeks before and 14 wk after administration, chylomicron metabolism and plasma palmitate and glycerol appearance rates were determined after ingestion of a low-fat meal containing (3)H-palmitate, combined with (continuous) iv infusion of [U-(13)C]palmitate and [1,1,2,3,3-(2)H]glycerol. After administration of alipogene tiparvovec, the triglyceride (TG) content of the chylomicron fraction and the chylomicron-TG/total plasma TG ratio were reduced throughout the postprandial period. The postprandial peak chylomicron (3)H level and chylomicron (3)H area under the curve were greatly reduced (by 79 and 93%, 6 and 24 h after the test meal, respectively). There were no significant changes in plasma NEFA and glycerol appearance rates. Plasma glucose, insulin, and C-peptide also did not change. Intramuscular administration of alipogene tiparvovec resulted in a significant improvement of postprandial chylomicron metabolism in LPLD patients, without inducing large postprandial NEFA spillover.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              DGAT1 is not essential for intestinal triacylglycerol absorption or chylomicron synthesis.

              Dietary triacylglycerols are a major source of energy for animals. The absorption of dietary triacylglycerols involves their hydrolysis to free fatty acids and monoacylglycerols in the intestinal lumen, the uptake of these products into enterocytes, the resynthesis of triacylgylcerols, and the incorporation of newly synthesized triacylglycerols into nascent chylomicrons for secretion. In enterocytes, the final step in triacylglycerol synthesis is believed to be catalyzed primarily through the actions of acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes. In this study, we analyzed intestinal triacylglycerol absorption and chylomicron synthesis and secretion in DGAT1-deficient (Dgat1(-/-)) mice. Surprisingly, DGAT1 was not essential for quantitative dietary triacylglycerol absorption, even in mice fed a high fat diet, or for the synthesis of chylomicrons. However, Dgat1(-/-) mice had reduced postabsorptive chylomicronemia (1 h after a high fat challenge) and accumulated neutral-lipid droplets in the cytoplasm of enterocytes when chronically fed a high fat diet. These results suggest a reduced rate of triacylglycerol absorption in Dgat1(-/-) mice. Analysis of intestine from Dgat1(-/-) mice revealed activity for two other enzymes, DGAT2 and diacylglycerol transacylase, that catalyze triacylglycerol synthesis and apparently help to compensate for the absence of DGAT1. Our findings indicate that multiple mechanisms for triacylglycerol synthesis in the intestine facilitate triacylglycerol absorption.
                Bookmark

                Author and article information

                Contributors
                dan.meyers@novartis.com
                karine.tremblay@ecogene21.org
                ahmed.amer@novartis.com
                jin.chen@novartis.com
                liewen.jiang@novartis.com
                daniel.gaudet@umontreal.ca
                Journal
                Lipids Health Dis
                Lipids Health Dis
                Lipids in Health and Disease
                BioMed Central (London )
                1476-511X
                18 February 2015
                18 February 2015
                2015
                : 14
                : 8
                Affiliations
                [ ]Novartis Institutes for Biomedical Research, Cambridge, MA USA
                [ ]Department of Medicine, Université de Montréal and ECOGENE-21 Clinical Research Center, Chicoutimi, QC Canada
                [ ]Novartis Institutes for Biomedical Research, East Hanover, NJ USA
                Article
                6
                10.1186/s12944-015-0006-5
                4337059
                25889044
                e2bf3c9c-c224-4e72-b10a-94b1587b36f5
                © Meyers et al.; licensee BioMed Central. 2015

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 8 September 2014
                : 28 January 2015
                Categories
                Research
                Custom metadata
                © The Author(s) 2015

                Biochemistry
                lipoprotein lipase deficiency,type 1 hyperlipoproteinemia,orphan disease,lcq908,clinical trial,pradigastat,chylomicronemia,dgat1

                Comments

                Comment on this article