15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      VO 2max (VO 2peak) in elite athletes under high-intensity interval training: A meta-analysis

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Consensus is lacking regarding whether high-intensity interval training (HIIT) effectively improves VO 2max (VO 2peak) in elite athletes (Athlete must be involved in regular competition at the national level). This meta-analysis compared the effects of HIIT and conventional training methods (continuous training, repeated-sprint training, high volume low-intensity training, high-intensity continuous running, sprint-interval training, moderate-intensity continuous training)on VO 2max in elite athletes. Nine studies were included, comprising 176 elite athletes (80 female). Compared to that with conventional training, VO 2max was significantly increased after HIIT (overall: 0.58 [0.30, 0.87], I 2 = 0.49, P = 0.03; males: 0.41 [0.06, 0.76], I 2 = 0%, P = 0.89). VO 2max had positive training effects when the HIIT recovery period had an interval time ≥2 min (0.44 [0.03, 0.84], I 2 = 0%, P = 0.99) and recovery phase intensity ≤40% (0.38 [0.05, 0.71], I 2 = 0%, P = 0.96). Thus, HIIT shows superiority over conventional training methods in improving VO 2max, promoting aerobic capacity, in elite athletes.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: not found

          The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration

          Systematic reviews and meta-analyses are essential to summarise evidence relating to efficacy and safety of healthcare interventions accurately and reliably. The clarity and transparency of these reports, however, are not optimal. Poor reporting of systematic reviews diminishes their value to clinicians, policy makers, and other users. Since the development of the QUOROM (quality of reporting of meta-analysis) statement—a reporting guideline published in 1999—there have been several conceptual, methodological, and practical advances regarding the conduct and reporting of systematic reviews and meta-analyses. Also, reviews of published systematic reviews have found that key information about these studies is often poorly reported. Realising these issues, an international group that included experienced authors and methodologists developed PRISMA (preferred reporting items for systematic reviews and meta-analyses) as an evolution of the original QUOROM guideline for systematic reviews and meta-analyses of evaluations of health care interventions. The PRISMA statement consists of a 27-item checklist and a four-phase flow diagram. The checklist includes items deemed essential for transparent reporting of a systematic review. In this explanation and elaboration document, we explain the meaning and rationale for each checklist item. For each item, we include an example of good reporting and, where possible, references to relevant empirical studies and methodological literature. The PRISMA statement, this document, and the associated website (www.prisma-statement.org/) should be helpful resources to improve reporting of systematic reviews and meta-analyses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            High-intensity interval training, solutions to the programming puzzle: Part I: cardiopulmonary emphasis.

            High-intensity interval training (HIT), in a variety of forms, is today one of the most effective means of improving cardiorespiratory and metabolic function and, in turn, the physical performance of athletes. HIT involves repeated short-to-long bouts of rather high-intensity exercise interspersed with recovery periods. For team and racquet sport players, the inclusion of sprints and all-out efforts into HIT programmes has also been shown to be an effective practice. It is believed that an optimal stimulus to elicit both maximal cardiovascular and peripheral adaptations is one where athletes spend at least several minutes per session in their 'red zone,' which generally means reaching at least 90% of their maximal oxygen uptake (VO2max). While use of HIT is not the only approach to improve physiological parameters and performance, there has been a growth in interest by the sport science community for characterizing training protocols that allow athletes to maintain long periods of time above 90% of VO2max (T@VO2max). In addition to T@VO2max, other physiological variables should also be considered to fully characterize the training stimulus when programming HIT, including cardiovascular work, anaerobic glycolytic energy contribution and acute neuromuscular load and musculoskeletal strain. Prescription for HIT consists of the manipulation of up to nine variables, which include the work interval intensity and duration, relief interval intensity and duration, exercise modality, number of repetitions, number of series, as well as the between-series recovery duration and intensity. The manipulation of any of these variables can affect the acute physiological responses to HIT. This article is Part I of a subsequent II-part review and will discuss the different aspects of HIT programming, from work/relief interval manipulation to the selection of exercise mode, using different examples of training cycles from different sports, with continued reference to T@VO2max and cardiovascular responses. Additional programming and periodization considerations will also be discussed with respect to other variables such as anaerobic glycolytic system contribution (as inferred from blood lactate accumulation), neuromuscular load and musculoskeletal strain (Part II).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Individual differences in response to regular physical activity.

              The purpose of this review was to address the question of interindividual variation in responsiveness to regular exercise training and to define the contributions of age, sex, race, and pretraining phenotype level to this variability. A literature review was conducted of the studies reporting interindividual variation in responsiveness to standardized and controlled exercise-training programs, and included an analysis of the contribution of age, sex, race, and initial phenotype values to the heterogeneity in VO(2max), high-density lipoprotein (HDL)-C and submaximal exercise, heart rate (HR), and systolic blood pressure (SBP) training responses in subjects from the HERITAGE Family Study. Several studies have shown marked individual differences in responsiveness to exercise training. For example, VO(2max) responses to standardized training programs have ranged from almost no gain up to 100% increase in large groups of sedentary individuals. A similar pattern of heterogeneity has been observed for other phenotypes. Data from the HERITAGE Family Study show that age, sex, and race have little impact on interindividual differences in training responses. On the other hand, the initial level of a phenotype is a major determinant of training response for some traits, such as submaximal exercise heart rate and blood pressure (BP) but has only a minor effect on others (e.g., VO(2max), HDL-C). The contribution of familial factors (shared environment and genetic factors) is supported by data on significant familial aggregation of training response phenotypes. There is strong evidence for considerable heterogeneity in the responsiveness to regular physical activity. Age, sex, and ethnic origin are not major determinants of human responses to regular physical activity, whereas the pretraining level of a phenotype has a considerable impact in some cases. Familial factors also contribute significantly to variability in training response.
                Bookmark

                Author and article information

                Contributors
                Journal
                Heliyon
                Heliyon
                Heliyon
                Elsevier
                2405-8440
                01 June 2023
                June 2023
                01 June 2023
                : 9
                : 6
                : e16663
                Affiliations
                [a ]Shanghai University of Sport, China
                [b ]Xi'an Physical Education University, China
                Author notes
                []Corresponding author. caozb_edu@ 123456yahoo.co.jp
                Article
                S2405-8440(23)03870-7 e16663
                10.1016/j.heliyon.2023.e16663
                10279791
                37346345
                e28c329d-acf3-4c57-8b9c-df604cc564c5
                © 2023 The Authors. Published by Elsevier Ltd.

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                History
                : 4 August 2022
                : 22 May 2023
                : 23 May 2023
                Categories
                Review Article

                meta-analysis,high-intensity interval training,elite athlete,vo2max

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content240

                Cited by3

                Most referenced authors799