44
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Floral Reward, Advertisement and Attractiveness to Honey Bees in Dioecious Salix caprea

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In dioecious, zoophilous plants potential pollinators have to be attracted to both sexes and switch between individuals of both sexes for pollination to occur. It often has been suggested that males and females require different numbers of visits for maximum reproductive success because male fertility is more likely limited by access to mates, whereas female fertility is rather limited by resource availability. According to sexual selection theory, males therefore should invest more in pollinator attraction (advertisement, reward) than females. However, our knowledge on the sex specific investment in floral rewards and advertisement, and its effects on pollinator behaviour is limited. Here, we use an approach that includes chemical, spectrophotometric, and behavioural studies i) to elucidate differences in floral nectar reward and advertisement (visual, olfactory cues) in dioecious sallow, Salix caprea, ii) to determine the relative importance of visual and olfactory floral cues in attracting honey bee pollinators, and iii) to test for differential attractiveness of female and male inflorescence cues to honey bees. Nectar amount and sugar concentration are comparable, but sugar composition varies between the sexes. Olfactory sallow cues are more attractive to honey bees than visual cues; however, a combination of both cues elicits the strongest behavioural responses in bees. Male flowers are due to the yellow pollen more colourful and emit a higher amount of scent than females. Honey bees prefer the visual but not the olfactory display of males over those of females. In all, the data of our multifaceted study are consistent with the sexual selection theory and provide novel insights on how the model organism honey bee uses visual and olfactory floral cues for locating host plants.

          Related collections

          Most cited references13

          • Record: found
          • Abstract: found
          • Article: not found

          Qualitative and quantitative analyses of flower scent in Silene latifolia.

          The quantitative and qualitative variability in floral scent of 98 specimens of the dioecious species Silene latifolia belonging to 15 European and 19 North American populations was determined. Floral scent was collected from single flowers using dynamic headspace methods, and analysed by Micro-SPE and GC-MS methods. The flowers showed a nocturnal rhythm, and scent was emitted only at night. The amount of emitted volatiles varied greatly during the season, from 400 ng/flower/2 min in June to 50 ng/flower/2 min in August and September. The qualitative variability in the floral scent was high and different chemotypes, characterised by specific scent compounds, were found. Female and male flowers emitted the same type and amount of volatiles. The differences in floral scent composition between European and North American populations were small. Typical compounds were isoprenoids like lilac aldehyde isomers, or trans-beta-ocimene, and benzenoids like benzaldehyde, phenyl acetaldehyde, or veratrole. Some of these compounds are known to attract nocturnal Lepidoptera species. The high qualitative variability is discussed in relation to the pollination biology of S. latifolia, and the results are compared with other studies investigating intraspecific variability of flower scent.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Invisible floral larcenies: microbial communities degrade floral nectar of bumble bee-pollinated plants.

            The ecology of nectarivorous microbial communities remains virtually unknown, which precludes elucidating whether these organisms play some role in plant-pollinator mutualisms beyond minor commensalism. We simultaneously assessed microbial abundance and nectar composition at the individual nectary level in flowers of three southern Spanish bumble bee-pollinated plants (Helleborus foetidus, Aquilegia vulgaris, and Aquilegia pyrenaica cazorlensis). Yeasts were frequent and abundant in nectar of all species, and variation in yeast density was correlated with drastic changes in nectar sugar concentration and composition. Yeast communities built up in nectar from early to late floral stages, at which time all nectaries contained yeasts, often at densities between 10(4) and 10(5) cells/mm3. Total sugar concentration and percentage sucrose declined, and percentage fructose increased, with increasing density of yeast cells in nectar. Among-nectary variation in microbial density accounted for 65% (H. foetidus and A. vulgaris) and 35% (A. p. cazorlensis) of intraspecific variance in nectar sugar composition, and 60% (H. foetidus) and 38% (A. vulgaris) of variance in nectar concentration. Our results provide compelling evidence that nectar microbial communities can have detrimental effects on plants and/or pollinators via extensive nectar degradation and also call for a more careful interpretation of nectar traits in the future, if uncontrolled for yeasts.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The spectral input systems of hymenopteran insects and their receptor-based colour vision.

              Spectral sensitivity functions S(lambda) of single photoreceptor cells in 43 different hymenopteran species were measured intracellularly with the fast spectral scan method. The distribution of maximal sensitivity values (lambda max) shows 3 major peaks at 340 nm, 430 nm and 535 nm and a small peak at 600 nm. Predictions about the colour vision systems of the different hymenopteran species are derived from the spectral sensitivities by application of a receptor model of colour vision and a model of two colour opponent channels. Most of the species have a trichromatic colour vision system. Although the S(lambda) functions are quite similar, the predicted colour discriminability curves differ in their relative height of best discriminability in the UV-blue or blue-green area of the spectrum, indicating that relatively small differences in the S(lambda) functions may have considerable effects on colour discriminability. Four of the hymenopteran insects tested contain an additional R-receptor with maximal sensitivity around 600 nm. The R-receptor of the solitary bee Callonychium petuniae is based on a pigment (P596) with a long lambda max, whereas in the sawfly Tenthredo campestris the G-receptor appears to act as filter to a pigment (P570), shifting its lambda max value to a longer wavelength and narrowing its bandwidth. Evolutionary and life history constraints (e.g. phylogenetic relatedness, social or solitary life, general or specialized feeding behaviour) appear to have no effect on the S(lambda) functions. The only effect is found in UV receptors, for which lambda max values at longer wavelengths are found in bees flying predominantly within the forest.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                27 March 2014
                : 9
                : 3
                : e93421
                Affiliations
                [1 ]Department of Plant Systematics, University of Bayreuth, Bayreuth, Germany
                [2 ]Ecological-Botanical Garden, University of Bayreuth, Bayreuth, Germany
                [3 ]School of Biological and Conservation Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
                [4 ]Department of Animal Ecology, University of Bayreuth, Bayreuth, Germany
                Monash University, Australia
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: SD AJ GA. Performed the experiments: UG JW. Analyzed the data: UG SD. Contributed reagents/materials/analysis tools: SD JW. Wrote the paper: SD UG JW AJ GA.

                [¤]

                Current address: Organismic Biology, University of Salzburg, Salzburg, Austria

                Article
                PONE-D-13-45671
                10.1371/journal.pone.0093421
                3968154
                24676333
                e2797781-0948-45b4-8d04-e91d525500f8
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 26 October 2013
                : 6 March 2014
                Page count
                Pages: 11
                Funding
                This work was supported by German Research Foundation (Research Training Group 678, Project C5). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Ecology
                Plant Ecology
                Plant-Environment Interactions
                Behavioral Ecology
                Chemical Ecology
                Evolutionary Ecology
                Evolutionary Biology
                Evolutionary Processes
                Natural Selection
                Sexual Selection
                Organisms
                Plants
                Plant Science
                Plant Anatomy
                Flowers
                Pollen
                Ecology and Environmental Sciences

                Uncategorized
                Uncategorized

                Comments

                Comment on this article