7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Endoplasmic Reticulum Stress Contributes to Gefitinib-Induced Apoptosis in Glioma

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Adequate stress on the Endoplasmic Reticulum (ER) with the Unfolded Protein Response (UPR) could maintain glioma malignancy. Uncontrolled ER stress, on the other hand, predisposes an apoptosis-dominant UPR program. We studied here the proapoptotic actions of the Epidermal Growth Factor Receptor (EGFR) inhibitor gefitinib, with the focus on ER stress. The study models were human H4 and U87 glioma cell lines. We found that the glioma cell-killing effects of gefitinib involved caspase 3 apoptotic cascades. Three branches of ER stress, namely Activating Transcription Factor-6 (ATF6), Protein Kinase R (PKR)-Like ER Kinase (PERK), and Inositol-Requiring Enzyme 1 (IRE1), were activated by gefitinib, along with the elevation of intracellular free Ca 2+, Reactive Oxygen Species (ROS), and NADPH Oxidase2/4 (NOX2/4). Specifically, elevated IRE1 phosphorylation, Tumor Necrosis Factor (TNF) Receptor-Associated Factor-2 (TRAF2) expression, Apoptosis Signal-Regulating Kinase-1 (Ask1) phosphorylation, c-Jun N-Terminal Kinase (JNK) phosphorylation, and Noxa expression appeared in gefitinib-treated glioma cells. Genetic, pharmacological, and biochemical studies further indicated an active ROS/ER stress/Ask1/JNK/Noxa axis causing the glioma apoptosis induced by gefitinib. The findings suggest that ER-stress-based therapeutic targeting could be a promising option in EGFR inhibitor glioma therapy, and may ultimately achieve a better patient response.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Effect of Tumor-Treating Fields Plus Maintenance Temozolomide vs Maintenance Temozolomide Alone on Survival in Patients With Glioblastoma

          Tumor-treating fields (TTFields) is an antimitotic treatment modality that interferes with glioblastoma cell division and organelle assembly by delivering low-intensity alternating electric fields to the tumor.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Endoplasmic Reticulum Stress Signaling in Cancer Cells

            To survive, cancer cells must resist numerous internal and environmental insults associated with neoplasia that jeopardize proteostasis within the endoplasmic reticulum (ER). Solid and hematopoietic tumors often experience genomic instability, oncogene activation, increased protein secretion demands, and somatic mutations in proteins handled by the secretory pathway that impede their folding. Invasion or metastasis into foreign environments can expose tumor cells to hypoxia, oxidative stress, lack of growth signals, inadequate amino acid supplies, glucose deprivation, and lactic acidosis, all of which pose challenges for protein processing in the ER. Together, these conditions can promote the buildup of misfolded proteins in the ER to cause ER stress, which then activates the unfolded protein response (UPR). An intracellular signaling network largely initiated by three ER transmembrane proteins, the UPR constantly surveils protein folding conditions within the ER lumen and when necessary initiates counteractive measures to maintain ER homeostasis. Under mild or moderate levels of ER stress, the homeostatic UPR sets in motion transcriptional and translational changes that promote cell adaption and survival. However, if these processes are unsuccessful at resolving ER stress, a terminal UPR program dominates and actively signals cell suicide. This article summarizes the mounting evidence that cancer cells are predisposed to ER stress and vulnerable to targeted interventions against ongoing UPR signaling.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Inhibition of glioma growth by flavokawain B is mediated through endoplasmic reticulum stress induced autophagy

              Flavokawain B (FKB), a natural kava chalcone, displays potent antitumor activity in various types of cancer. The mechanism of action, however, remains unclear. Here, we evaluated the efficacy of FKB in the treatment of human glioblastoma multiforme (GBM) as well as the molecular basis for its inhibitory effects in cancer. Approximately 60% of GBM cells became senescent after treatment with FKB as assessed in the senescence-associated (SA)-GLB1/SA-β-galactosidase assay. The cellular process of autophagy potentially contributed to the establishment of senescence. Transmission electron microscopy revealed the formation of autophagic vesicles under FKB treatment, and MAP1LC3B (microtubule associated protein 1 light chain 3 beta)-II was increased. Transfection of ATG5 or ATG7 small interfering RNAs (siRNAs) inhibited FKB-induced autophagy in U251 cells. Western blot revealed that molecular components of the endoplasmic reticulum stress pathway were activated, including ATF4 (activating transcription factor 4) and DDIT3 (DNA damage inducible transcript 3), while levels of TRIB3 (tribbles pseudokinase 3) increased. In addition, based on the phosphorylation status, the AKT-MTOR-RPS6KB1 pathway was inhibited, which induced autophagy in GBM cells. Inhibition of autophagy by autophagy inhibitors 3-methyladenine and chloroquine or knockdown of ATG5 or ATG7 caused FKB-treated U251 cells to switch from senescence to apoptosis. Finally, knockdown of ATG5 or treatment with chloroquine in combination with FKB, significantly inhibited tumor growth in vivo . Our results demonstrated that FKB induced protective autophagy through the ATF4-DDIT3-TRIB3-AKT-MTOR-RPS6KB1 signaling pathway in GBM cells, indicating that the combination treatment of FKB with autophagy inhibitors may potentially be an effective therapeutic strategy for GBM. Abbreviations: 3-MA: 3-methyladenine; 4-PBA: 4-phenylbutyrate; AKT: AKT serine/threonine kinase; ATF4: activating transcription factor 4; ATG: autophagy related; CASP3: caspase 3; CCK-8: cell counting kit-8; CDKN1A: cyclin-dependent kinase inhibitor 1A; CQ: chloroquine; DDIT3: DNA damage inducible transcript 3; DMEM: Dulbecco’s modified Eagle’s medium; EIF2A: eukaryotic translation initiation factor 2A; EIF2AK3: eukaryotic translation initiation factor 2 alpha kinase 3; ER: endoplasmic reticulum; FKB: flavokawain B; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GBM: glioblastoma multiforme; GFP: green fluorescent protein; HSPA5: heat shock protein family A (Hsp70) member 5; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; MTOR: mechanistic target of rapamycin kinase; PARP1: poly(ADP-ribose) polymerase; 1RPS6KB1: ribosomal protein S6 kinase B1; SA-GLB1: senescence-associated galactosidase beta 1; siRNA: short interfering RNA; SQSTM1: sequestosome 1; TEM: transmission electron microscopy; TRIB3: tribbles pseudokinase 3; TUNEL: deoxynucleotidyl transferase-mediated dUTP nick-end labeling
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                11 April 2021
                April 2021
                : 22
                : 8
                : 3934
                Affiliations
                [1 ]Department of Surgery, Feng Yuan Hospital, Taichung 420, Taiwan; c.y.chang.ns@ 123456gmail.com
                [2 ]Department of Pediatrics, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan; pph.pgi@ 123456gmail.com
                [3 ]Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan; wychen@ 123456dragon.nchu.edu.tw
                [4 ]Department of Anesthesiology, Taichung Veterans General Hospital, Taichung 407, Taiwan; chihcheng.wu@ 123456gmail.com
                [5 ]Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan; slliao@ 123456vghtc.gov.tw
                [6 ]Department of Pharmacology, Chung Shan Medical University, Taichung 402, Taiwan; kuanyh@ 123456csmu.edu.tw
                [7 ]Department of Nursing, HungKuang University, Taichung 433, Taiwan; walice@ 123456sunrise.hk.edu.tw
                [8 ]Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404, Taiwan
                Author notes
                [* ]Correspondence: cjchen@ 123456vghtc.gov.tw ; Tel.: +886-423-592-525 (ext. 4022)
                Author information
                https://orcid.org/0000-0002-5105-5285
                https://orcid.org/0000-0002-8991-6394
                Article
                ijms-22-03934
                10.3390/ijms22083934
                8069544
                33920356
                e24ccfa4-90ae-4206-ad1b-09128f923fed
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 17 March 2021
                : 08 April 2021
                Categories
                Article

                Molecular biology
                apoptosis,egfr inhibitors,er stress,glioma,noxa
                Molecular biology
                apoptosis, egfr inhibitors, er stress, glioma, noxa

                Comments

                Comment on this article