0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Changes in Structural Neural Networks in the Recovery Process of Motor Paralysis after Stroke

      , ,
      Brain Sciences
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In recent years, neurorehabilitation has been actively used to treat motor paralysis after stroke. However, the impacts of rehabilitation on neural networks in the brain remain largely unknown. Therefore, we investigated changes in structural neural networks after rehabilitation therapy in patients who received a combination of low-frequency repetitive transcranial magnetic stimulation (LF-rTMS) and intensive occupational therapy (intensive-OT) as neurorehabilitation. Fugl-Meyer assessment (FMA) for upper extremity (FMA-UE) and Action Research Arm Test (ARAT), both of which reflected upper limb motor function, were conducted before and after rehabilitation therapy. At the same time, diffusion tensor imaging (DTI) and three-dimensional T1-weighted imaging (3D T1WI) were performed. After analyzing the structural connectome based on DTI data, measures related to connectivity in neural networks were calculated using graph theory. Rehabilitation therapy prompted a significant increase in connectivity with the isthmus of the cingulate gyrus in the ipsilesional hemisphere (p < 0.05) in patients with left-sided paralysis, as well as a significant decrease in connectivity with the ipsilesional postcentral gyrus (p < 0.05). These results indicate that LF-rTMS combined with intensive-OT may facilitate motor function recovery by enhancing the functional roles of networks in motor-related areas of the ipsilesional cerebral hemisphere.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest.

          In this study, we have assessed the validity and reliability of an automated labeling system that we have developed for subdividing the human cerebral cortex on magnetic resonance images into gyral based regions of interest (ROIs). Using a dataset of 40 MRI scans we manually identified 34 cortical ROIs in each of the individual hemispheres. This information was then encoded in the form of an atlas that was utilized to automatically label ROIs. To examine the validity, as well as the intra- and inter-rater reliability of the automated system, we used both intraclass correlation coefficients (ICC), and a new method known as mean distance maps, to assess the degree of mismatch between the manual and the automated sets of ROIs. When compared with the manual ROIs, the automated ROIs were highly accurate, with an average ICC of 0.835 across all of the ROIs, and a mean distance error of less than 1 mm. Intra- and inter-rater comparisons yielded little to no difference between the sets of ROIs. These findings suggest that the automated method we have developed for subdividing the human cerebral cortex into standard gyral-based neuroanatomical regions is both anatomically valid and reliable. This method may be useful for both morphometric and functional studies of the cerebral cortex as well as for clinical investigations aimed at tracking the evolution of disease-induced changes over time, including clinical trials in which MRI-based measures are used to examine response to treatment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Complex network measures of brain connectivity: uses and interpretations.

            Brain connectivity datasets comprise networks of brain regions connected by anatomical tracts or by functional associations. Complex network analysis-a new multidisciplinary approach to the study of complex systems-aims to characterize these brain networks with a small number of neurobiologically meaningful and easily computable measures. In this article, we discuss construction of brain networks from connectivity data and describe the most commonly used network measures of structural and functional connectivity. We describe measures that variously detect functional integration and segregation, quantify centrality of individual brain regions or pathways, characterize patterns of local anatomical circuitry, and test resilience of networks to insult. We discuss the issues surrounding comparison of structural and functional network connectivity, as well as comparison of networks across subjects. Finally, we describe a Matlab toolbox (http://www.brain-connectivity-toolbox.net) accompanying this article and containing a collection of complex network measures and large-scale neuroanatomical connectivity datasets. Copyright (c) 2009 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Complex brain networks: graph theoretical analysis of structural and functional systems.

              Recent developments in the quantitative analysis of complex networks, based largely on graph theory, have been rapidly translated to studies of brain network organization. The brain's structural and functional systems have features of complex networks--such as small-world topology, highly connected hubs and modularity--both at the whole-brain scale of human neuroimaging and at a cellular scale in non-human animals. In this article, we review studies investigating complex brain networks in diverse experimental modalities (including structural and functional MRI, diffusion tensor imaging, magnetoencephalography and electroencephalography in humans) and provide an accessible introduction to the basic principles of graph theory. We also highlight some of the technical challenges and key questions to be addressed by future developments in this rapidly moving field.
                Bookmark

                Author and article information

                Contributors
                Journal
                BSRCCS
                Brain Sciences
                Brain Sciences
                MDPI AG
                2076-3425
                March 2024
                February 21 2024
                : 14
                : 3
                : 197
                Article
                10.3390/brainsci14030197
                e24bb09c-35dd-40b1-9427-094018708586
                © 2024

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article