3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nutritional modulation of fertility in male poultry

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The increased consumption of protein derived from poultry demands greater poultry production, but increased poultry production (meat and eggs) is dependent on the fertility of the parent flocks. Clearly, the fertility of poultry flocks is associated with the fertility of both males and females, but the low numbers of males used for natural or artificial insemination mean that their role is more important. Thus, enhancing the semen volume, sperm concentration, viability, forward motility, and polyunsaturated fatty acids in sperm, as well as protecting against oxidative damage, could help to optimize the sperm membrane functionality, mitochondrial activity, and sperm-egg penetration, and thus fertility. Therefore, this review summarizes the nutritional factors that could improve the fertility of poultry males as well as their associated mechanisms to allow poultry producers to overcome low-fertility problems, especially in aging poultry males, thereby obtaining beneficial impacts on the poultry production industry.

          Related collections

          Most cited references139

          • Record: found
          • Abstract: found
          • Article: not found

          Bioenergetic and antioxidant properties of coenzyme Q10: recent developments.

          For a number of years, coenzyme Q (CoQ10 in humans) was known for its key role in mitochondrial bioenergetics; later studies demonstrated its presence in other subcellular fractions and in plasma, and extensively investigated its antioxidant role. These two functions constitute the basis on which research supporting the clinical use of CoQ10 is founded. Also at the inner mitochondrial membrane level, coenzyme Q is recognized as an obligatory co-factor for the function of uncoupling proteins and a modulator of the transition pore. Furthermore, recent data reveal that CoQ10 affects expression of genes involved in human cell signalling, metabolism, and transport and some of the effects of exogenously administered CoQ10 may be due to this property. Coenzyme Q is the only lipid soluble antioxidant synthesized endogenously. In its reduced form, CoQH2, ubiquinol, inhibits protein and DNA oxidation but it is the effect on lipid peroxidation that has been most deeply studied. Ubiquinol inhibits the peroxidation of cell membrane lipids and also that of lipoprotein lipids present in the circulation. Dietary supplementation with CoQ10 results in increased levels of ubiquinol-10 within circulating lipoproteins and increased resistance of human low-density lipoproteins to the initiation of lipid peroxidation. Moreover, CoQ10 has a direct anti-atherogenic effect, which has been demonstrated in apolipoprotein E-deficient mice fed with a high-fat diet. In this model, supplementation with CoQ10 at pharmacological doses was capable of decreasing the absolute concentration of lipid hydroperoxides in atherosclerotic lesions and of minimizing the size of atherosclerotic lesions in the whole aorta. Whether these protective effects are only due to the antioxidant properties of coenzyme Q remains to be established; recent data point out that CoQ10 could have a direct effect on endothelial function. In patients with stable moderate CHF, oral CoQ10 supplementation was shown to ameliorate cardiac contractility and endothelial dysfunction. Recent data from our laboratory showed a strong correlation between endothelium bound extra cellular SOD (ecSOD) and flow-dependent endothelial-mediated dilation, a functional parameter commonly used as a biomarker of vascular function. The study also highlighted that supplementation with CoQ10 that significantly affects endothelium-bound ecSOD activity. Furthermore, we showed a significant correlation between increase in endothelial bound ecSOD activity and improvement in FMD after CoQ10 supplementation. The effect was more pronounced in patients with low basal values of ecSOD. Finally, we summarize the findings, also from our laboratory, on the implications of CoQ10 in seminal fluid integrity and sperm cell motility.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Chrysin: Sources, beneficial pharmacological activities, and molecular mechanism of action

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Nutritional Factors Affecting Abdominal Fat Deposition in Poultry: A Review

              The major goals of the poultry industry are to increase the carcass yield and to reduce carcass fatness, mainly the abdominal fat pad. The increase in poultry meat consumption has guided the selection process toward fast-growing broilers with a reduced feed conversion ratio. Intensive selection has led to great improvements in economic traits such as body weight gain, feed efficiency, and breast yield to meet the demands of consumers, but modern commercial chickens exhibit excessive fat accumulation in the abdomen area. However, dietary composition and feeding strategies may offer practical and efficient solutions for reducing body fat deposition in modern poultry strains. Thus, the regulation of lipid metabolism to reduce the abdominal fat content based on dietary composition and feeding strategy, as well as elucidating their effects on the key enzymes associated with lipid metabolism, could facilitate the production of lean meat and help to understand the fat-lowering effects of diet and different feeding strategies.
                Bookmark

                Author and article information

                Contributors
                Journal
                Poult Sci
                Poult Sci
                Poultry Science
                Elsevier
                0032-5791
                1525-3171
                12 August 2020
                November 2020
                12 August 2020
                : 99
                : 11
                : 5637-5646
                Affiliations
                []Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, PR China
                []Department of Animal Production, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
                Author notes
                [1 ]Corresponding author: zhengchuntian@ 123456gdaas.cn
                Article
                S0032-5791(20)30514-9
                10.1016/j.psj.2020.06.083
                7647795
                33142481
                e2314b24-60f1-4aa4-a194-b66aaf296ec8
                © 2020 Published by Elsevier Inc. on behalf of Poultry Science Association Inc.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 15 February 2020
                : 20 June 2020
                Categories
                Metabolism and Nutrition

                fertility,nutritional factor,poultry male,semen quality
                fertility, nutritional factor, poultry male, semen quality

                Comments

                Comment on this article