19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Radiomics Analysis on FLT-PET/MRI for Characterization of Early Treatment Response in Renal Cell Carcinoma: A Proof-of-Concept Study 1

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Studying early response to cancer treatment is significant for patient treatment stratification and follow-up. Although recent advances in positron emission tomography (PET) and magnetic resonance imaging (MRI) allow for evaluation of tumor response, a quantitative objective assessment of treatment-related effects offers localization and quantification of structural and functional changes in the tumor region. Radiomics, the process of computerized extraction of features from radiographic images, is a new strategy for capturing subtle changes in the tumor region that works by quantifying subvisual patterns which might escape human identification. The goal of this study was to demonstrate feasibility for performing radiomics analysis on integrated PET/MRI to characterize early treatment response in metastatic renal cell carcinoma (RCC) undergoing sunitinib therapy. Two patients with advanced RCC were imaged using an integrated PET/MRI scanner. [18 F] fluorothymidine (FLT) was used as the PET radiotracer, which can measure the degree of cell proliferation. Image acquisitions included test/retest scans before sunitinib treatment and one scan 3 weeks into treatment using [18 F] FLT-PET, T2-weighted (T2w), and diffusion-weighted imaging (DWI) protocols, where DWI yielded an apparent diffusion coefficient (ADC) map. Our framework to quantitatively characterize treatment-related changes involved the following analytic steps: 1) intraacquisition and interacquisition registration of protocols to allow voxel-wise comparison of changes in radiomic features, 2) correction and pseudoquantification of T2w images to remove acquisition artifacts and examine tissue-specific response, 3) characterization of information captured by T2w MRI, FLT-PET, and ADC via radiomics, and 4) combining multiparametric information to create a map of integrated changes from PET/MRI radiomic features. Standardized uptake value (from FLT-PET) and ADC textures ranked highest for reproducibility in a test/retest evaluation as well as for capturing treatment response, in comparison to high variability seen in T2w MRI. The highest-ranked radiomic feature yielded a normalized percentage change of 63% within the RCC region and 17% in a spatially distinct normal region relative to its pretreatment value. By comparison, both the original and postprocessed T2w signal intensity appeared to be markedly less sensitive and specific to changes within the tumor. Our preliminary results thus suggest that radiomics analysis could be a powerful tool for characterizing treatment response in integrated PET/MRI.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          From RECIST to PERCIST: Evolving Considerations for PET response criteria in solid tumors.

          The purpose of this article is to review the status and limitations of anatomic tumor response metrics including the World Health Organization (WHO) criteria, the Response Evaluation Criteria in Solid Tumors (RECIST), and RECIST 1.1. This article also reviews qualitative and quantitative approaches to metabolic tumor response assessment with (18)F-FDG PET and proposes a draft framework for PET Response Criteria in Solid Tumors (PERCIST), version 1.0. PubMed searches, including searches for the terms RECIST, positron, WHO, FDG, cancer (including specific types), treatment response, region of interest, and derivative references, were performed. Abstracts and articles judged most relevant to the goals of this report were reviewed with emphasis on limitations and strengths of the anatomic and PET approaches to treatment response assessment. On the basis of these data and the authors' experience, draft criteria were formulated for PET tumor response to treatment. Approximately 3,000 potentially relevant references were screened. Anatomic imaging alone using standard WHO, RECIST, and RECIST 1.1 criteria is widely applied but still has limitations in response assessments. For example, despite effective treatment, changes in tumor size can be minimal in tumors such as lymphomas, sarcoma, hepatomas, mesothelioma, and gastrointestinal stromal tumor. CT tumor density, contrast enhancement, or MRI characteristics appear more informative than size but are not yet routinely applied. RECIST criteria may show progression of tumor more slowly than WHO criteria. RECIST 1.1 criteria (assessing a maximum of 5 tumor foci, vs. 10 in RECIST) result in a higher complete response rate than the original RECIST criteria, at least in lymph nodes. Variability appears greater in assessing progression than in assessing response. Qualitative and quantitative approaches to (18)F-FDG PET response assessment have been applied and require a consistent PET methodology to allow quantitative assessments. Statistically significant changes in tumor standardized uptake value (SUV) occur in careful test-retest studies of high-SUV tumors, with a change of 20% in SUV of a region 1 cm or larger in diameter; however, medically relevant beneficial changes are often associated with a 30% or greater decline. The more extensive the therapy, the greater the decline in SUV with most effective treatments. Important components of the proposed PERCIST criteria include assessing normal reference tissue values in a 3-cm-diameter region of interest in the liver, using a consistent PET protocol, using a fixed small region of interest about 1 cm(3) in volume (1.2-cm diameter) in the most active region of metabolically active tumors to minimize statistical variability, assessing tumor size, treating SUV lean measurements in the 1 (up to 5 optional) most metabolically active tumor focus as a continuous variable, requiring a 30% decline in SUV for "response," and deferring to RECIST 1.1 in cases that do not have (18)F-FDG avidity or are technically unsuitable. Criteria to define progression of tumor-absent new lesions are uncertain but are proposed. Anatomic imaging alone using standard WHO, RECIST, and RECIST 1.1 criteria have limitations, particularly in assessing the activity of newer cancer therapies that stabilize disease, whereas (18)F-FDG PET appears particularly valuable in such cases. The proposed PERCIST 1.0 criteria should serve as a starting point for use in clinical trials and in structured quantitative clinical reporting. Undoubtedly, subsequent revisions and enhancements will be required as validation studies are undertaken in varying diseases and treatments.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations.

            On May 3, 2008, a National Cancer Institute (NCI)-sponsored open consensus conference was held in Toronto, Ontario, Canada, during the 2008 International Society for Magnetic Resonance in Medicine Meeting. Approximately 100 experts and stakeholders summarized the current understanding of diffusion-weighted magnetic resonance imaging (DW-MRI) and reached consensus on the use of DW-MRI as a cancer imaging biomarker. DW-MRI should be tested as an imaging biomarker in the context of well-defined clinical trials, by adding DW-MRI to existing NCI-sponsored trials, particularly those with tissue sampling or survival indicators. Where possible, DW-MRI measurements should be compared with histologic indices including cellularity and tissue response. There is a need for tissue equivalent diffusivity phantoms; meanwhile, simple fluid-filled phantoms should be used. Monoexponential assessments of apparent diffusion coefficient values should use two b values (>100 and between 500 and 1000 mm2/sec depending on the application). Free breathing with multiple acquisitions is superior to complex gating techniques. Baseline patient reproducibility studies should be part of study designs. Both region of interest and histogram analysis of apparent diffusion coefficient measurements should be obtained. Standards for measurement, analysis, and display are needed. Annotated data from validation studies (along with outcome measures) should be made publicly available. Magnetic resonance imaging vendors should be engaged in this process. The NCI should establish a task force of experts (physicists, radiologists, and oncologists) to plan, organize technical aspects, and conduct pilot trials. The American College of Radiology Imaging Network infrastructure may be suitable for these purposes. There is an extraordinary opportunity for DW-MRI to evolve into a clinically valuable imaging tool, potentially important for drug development.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The Divergence and Bhattacharyya Distance Measures in Signal Selection

              T Kailath (1967)
                Bookmark

                Author and article information

                Contributors
                Journal
                Transl Oncol
                Transl Oncol
                Translational Oncology
                Neoplasia Press
                1936-5233
                12 April 2016
                April 2016
                12 April 2016
                : 9
                : 2
                : 155-162
                Affiliations
                [* ]Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Wickenden 525, Cleveland, OH 44106
                []General Electric Global Research, 1 Research Cir, Niskayuna, NY 12309
                []Department of Radiology, Case Western Reserve University, Case Center for Imaging Research, 11000 Euclid Ave, Cleveland, OH 44106
                [§ ]Department of Medicine, University Hospitals Seidman Cancer Center at the Case Comprehensive Cancer Center, 11000 Euclid Ave, Cleveland, OH 44106
                Author notes
                [* ]Address all correspondence to: Jacob Antunes, Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Wickenden 525, Cleveland, OH 44106.Department of Biomedical Engineering, Case Western Reserve University10900 Euclid Ave, Wickenden 525ClevelandOH44106 jacob.antunes@ 123456case.edu
                Article
                S1936-5233(15)30029-2
                10.1016/j.tranon.2016.01.008
                4833889
                27084432
                e2269f32-d704-4bbd-9bcf-206356eb4d7c
                © 2016 Pfizer Inc.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 2 October 2015
                : 20 January 2016
                : 27 January 2016
                Categories
                Original article

                Comments

                Comment on this article