29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evidence for perennial malaria in rural and urban areas under the Sudanian climate of Kandi, Northeastern Benin

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          In arid settings, droughts usually lead to periods of very low or no malaria transmission. However, in rural Kandi (Sonsoro) in northeastern Benin, several malaria cases are often diagnosed during dry seasons. The underlying factors accounting for this phenomenon remain unknown.

          Methods

          The entomological profile of Sonsoro has been studied compared to a location in urban Kandi (Gansosso) for a period of one year. During this period, Anopheles larval habitats were investigated and populations of Anopheles gambiae s.l. were sampled by human landing catches in both areas. Enzyme-linked immunosorbent assays (ELISA) for Plasmodium falciparum circumsporozoite protein (CSP) were conducted on vector specimens and the entomological inoculation rates (EIR) were determined per season (wet versus dry) in each area. In addition, during the severe drought period, Rapid Diagnostic Tests (RDTs) were conducted on school children under the age 10 years in these areas to provide a global view of drought-malaria prevalence and to perform a crossing with entomological data in Kandi.

          Results

          Overall, An. gambiae s.l. was particularly abundant in rural Kandi compared to the urban area with a significant decrease of vector density in both sites during the dry season. In this period, larval sampling data identified household water sources as potential breeding sites in urban and rural Kandi. We also observed a significant seasonal variation of the infectivity rate in both areas but for each period (season), the EIR was higher in the rural site than in the urban. Data of P. falciparum detection was the reflection of entomological findings. The drought-malaria prevalence was 5.5 times higher in rural Kandi as compared to urban Kandi. The presence of a permanent water site and the low level of urbanization in rural Kandi were identified as a risk factor.

          Conclusion

          Our data showed a high level of malaria transmission in the municipality of Kandi. Household water source plays an important role in maintaining the breeding of anopheles larvae and the malaria transmission in Kandi. In rural settings, the proximity to permanent water sites could probably be the aggravating factor.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Urbanization, malaria transmission and disease burden in Africa.

          Many attempts have been made to quantify Africa's malaria burden but none has addressed how urbanization will affect disease transmission and outcome, and therefore mortality and morbidity estimates. In 2003, 39% of Africa's 850 million people lived in urban settings; by 2030, 54% of Africans are expected to do so. We present the results of a series of entomological, parasitological and behavioural meta-analyses of studies that have investigated the effect of urbanization on malaria in Africa. We describe the effect of urbanization on both the impact of malaria transmission and the concomitant improvements in access to preventative and curative measures. Using these data, we have recalculated estimates of populations at risk of malaria and the resulting mortality. We find there were 1,068,505 malaria deaths in Africa in 2000 - a modest 6.7% reduction over previous iterations. The public-health implications of these findings and revised estimates are discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Potential effect of climate change on malaria transmission in Africa.

            Climate change is likely to affect transmission of vector-borne diseases such as malaria. We quantitatively estimated current malaria exposure and assessed the potential effect of projected climate scenarios on malaria transmission. We produced a spatiotemporally validated (against 3791 parasite surveys) model of Plasmodium falciparum malaria transmission in Africa. Using different climate scenarios from the Hadley Centre global climate model (HAD CM3) climate experiments, we projected the potential effect of climate change on transmission patterns. Our model showed sensitivity and specificity of 63% and 96%, respectively (within 1 month temporal accuracy), when compared with the parasite surveys. We estimate that on average there are 3.1 billion person-months of exposure (445 million people exposed) in Africa per year. The projected scenarios would estimate a 5-7% potential increase (mainly altitudinal) in malaria distribution with surprisingly little increase in the latitudinal extents of the disease by 2100. Of the overall potential increase (although transmission will decrease in some countries) of 16-28% in person-months of exposure (assuming a constant population), a large proportion will be seen in areas of existing transmission. The effect of projected climate change indicates that a prolonged transmission season is as important as geographical expansion in correct assessment of the effect of changes in transmission patterns. Our model constitutes a valid baseline against which climate scenarios can be assessed and interventions planned.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Malaria

              Malaria is the most important parasitic infection in people, accounting for more than 1 million deaths a year. Malaria has become a priority for the international health community and is now the focus of several new initiatives. Prevention and treatment of malaria could be greatly improved with existing methods if increased financial and labour resources were available. However, new approaches for prevention and treatment are needed. Several new drugs are under development, which are likely to be used in combinations to slow the spread of resistance, but the high cost of treatments would make sustainability difficult. Insecticide-treated bed-nets provide a simple but effective means of preventing malaria, especially with the development of longlasting nets in which insecticide is incorporated into the net fibres. One malaria vaccine, RTS,S/AS02, has shown promise in endemic areas and will shortly enter further trials. Other vaccines are being studied in clinical trials, but it will probably be at least 10 years before a malaria vaccine is ready for widespread use.
                Bookmark

                Author and article information

                Journal
                Parasit Vectors
                Parasit Vectors
                Parasites & Vectors
                BioMed Central
                1756-3305
                2014
                24 February 2014
                : 7
                : 79
                Affiliations
                [1 ]Centre de Recherche Entomologique de Cotonou (CREC), 06 BP 2604 Cotonou, Bénin
                [2 ]Faculté des Sciences et Techniques, Université d’Abomey Calavi, Calavi, Bénin
                [3 ]University of Massachusetts Amherst, Amherst, United States of America
                Article
                1756-3305-7-79
                10.1186/1756-3305-7-79
                3938969
                24564957
                e1ffbf05-d723-415b-bc7b-936f1637b6f2
                Copyright © 2014 Govoetchan et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 8 January 2014
                : 18 February 2014
                Categories
                Research

                Parasitology
                malaria,prevalence,vulnerability,domestic larval habitat,children,drought
                Parasitology
                malaria, prevalence, vulnerability, domestic larval habitat, children, drought

                Comments

                Comment on this article