5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mitochondrial Reactive Oxygen Species: Double-Edged Weapon in Host Defense and Pathological Inflammation During Infection

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mitochondria are inevitable sources for the generation of mitochondrial reactive oxygen species (mtROS) due to their fundamental roles in respiration. mtROS were reported to be bactericidal weapons with an innate effector function during infection. However, the controlled generation of mtROS is vital for the induction of efficient immune responses because excessive production of mtROS with mitochondrial damage leads to sustained inflammation, resulting in pathological outcomes such as sepsis. Here, we discuss the beneficial and detrimental roles of mtROS in the innate immune system during bacterial, viral, and fungal infections. Recent evidence suggests that several pathogens have evolved multiple strategies to modulate mtROS for their own benefit. We are just beginning to understand the mechanisms by which mtROS generation is regulated and how mtROS affect protective and pathological responses during infection. Several agents/small molecules that prevent the uncontrolled production of mtROS are known to be beneficial in the maintenance of tissue homeostasis during sepsis. mtROS-targeted approaches need to be incorporated into preventive and therapeutic strategies against a variety of infections.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          TLR signaling augments macrophage bactericidal activity through mitochondrial ROS

          Reactive oxygen species (ROS) are essential components of the innate immune response against intracellular bacteria, and it is thought that professional phagocytes generate ROS primarily via the phagosomal NADPH oxidase (Phox) machinery 1 . However, recent studies have suggested that mitochondrial ROS (mROS) also contribute to macrophage bactericidal activity, although the mechanisms linking innate immune signaling to mitochondria for mROS generation remain unclear 2-4 . Here we demonstrate that engagement of a subset of Toll-like receptors (TLR1, TLR2 and TLR4) results in the recruitment of mitochondria to macrophage phagosomes and augments mROS production. This response involves translocation of the TLR signaling adapter tumor necrosis factor receptor-associated factor 6 (TRAF6) to mitochondria where it engages evolutionarily conserved signaling intermediate in Toll pathways (ECSIT), a protein implicated in mitochondrial respiratory chain assembly 5 . Interaction with TRAF6 leads to ECSIT ubiquitination and enrichment at the mitochondrial periphery, resulting in increased mitochondrial and cellular ROS generation. ECSIT and TRAF6 depleted macrophages exhibit decreased levels of TLR-induced ROS and are significantly impaired in their ability to kill intracellular bacteria. Additionally, reducing macrophage mROS by expressing catalase in mitochondria results in defective bacterial killing, confirming the role of mROS in bactericidal activity. These results therefore reveal a novel pathway linking innate immune signaling to mitochondria, implicate mROS as important components of antibacterial responses, and further establish mitochondria as hubs for innate immune signaling.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            ROS, mitochondria and the regulation of autophagy.

            Accumulation of reactive oxygen species (ROS) is an oxidative stress to which cells respond by activating various defense mechanisms or, finally, by dying. At low levels, however, ROS act as signaling molecules in various intracellular processes. Autophagy, a process by which eukaryotic cells degrade and recycle macromolecules and organelles, has an important role in the cellular response to oxidative stress. Here, we review recent reports suggesting a regulatory role for ROS of mitochondrial origin as signaling molecules in autophagy, leading, under different circumstances, to either survival or cell death. We then discuss the relationship between mitochondria and autophagosomes and propose that mitochondria have an essential role in autophagosome biogenesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Absence of autophagy results in reactive oxygen species-dependent amplification of RLR signaling.

              Autophagy is a highly conserved process that maintains homeostasis by clearing damaged organelles and long-lived proteins. The consequences of deficiency in autophagy manifest in a variety of pathological states including neurodegenerative diseases, inflammatory disorders, and cancer. Here, we studied the role of autophagy in the homeostatic regulation of innate antiviral defense. Single-stranded RNA viruses are recognized by the members of the RIG-I-like receptors (RLRs) in the cytosol. RLRs signal through IPS-1, resulting in the production of the key antiviral cytokines, type I IFNs. Autophagy-defective Atg5(-/-) cells exhibited enhanced RLR signaling, increased IFN secretion, and resistance to infection by vesicular stomatitis virus. In the absence of autophagy, cells accumulated dysfunctional mitochondria, as well as mitochondria-associated IPS-1. Reactive oxygen species (ROS) associated with the dysfunctional mitochondria were largely responsible for the enhanced RLR signaling in Atg5(-/-) cells, as antioxidant treatment blocked the excess RLR signaling. In addition, autophagy-independent increase in mitochondrial ROS by treatment of cells with rotenone was sufficient to amplify RLR signaling in WT cells. These data indicate that autophagy contributes to homeostatic regulation of innate antiviral defense through the clearance of dysfunctional mitochondria, and revealed that ROS associated with mitochondria play a key role in potentiating RLR signaling.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                14 August 2020
                2020
                : 11
                : 1649
                Affiliations
                [1] 1Department of Microbiology, Chungnam National University School of Medicine , Daejeon, South Korea
                [2] 2Infection Control Convergence Research Center, Chungnam National University School of Medicine , Daejeon, South Korea
                Author notes

                Edited by: Pedro Manoel Mendes Moraes Vieira, Campinas State University, Brazil

                Reviewed by: Cristina Carvalho, University of Coimbra, Portugal; Cristiane Naffah De Souza, University of São Paulo, Brazil; Angela Castoldi, University of São Paulo, Brazil

                *Correspondence: Eun-Kyeong Jo hayoungj@ 123456cnu.ac.kr

                This article was submitted to Molecular Innate Immunity, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2020.01649
                7457135
                32922385
                e1ba24ee-9336-4bd6-8d03-499d17d9cd08
                Copyright © 2020 Silwal, Kim, Kim and Jo.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 22 April 2020
                : 19 June 2020
                Page count
                Figures: 1, Tables: 1, Equations: 0, References: 73, Pages: 10, Words: 7302
                Funding
                Funded by: National Research Foundation of Korea 10.13039/501100003725
                Award ID: 2017R1A5A2015385
                Award ID: 2019R1A2C1087686
                Funded by: Chungnam National University Hospital 10.13039/501100007631
                Categories
                Immunology
                Mini Review

                Immunology
                mitochondrial ros,infection,inflammation,immunity,host defense
                Immunology
                mitochondrial ros, infection, inflammation, immunity, host defense

                Comments

                Comment on this article