2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bacillus subtilis YlxR, Which Is Involved in Glucose-Responsive Metabolic Changes, Regulates Expression of tsaD for Protein Quality Control of Pyruvate Dehydrogenase

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Glucose is the most favorable carbon source for many bacteria, which have several glucose-responsive gene networks. Recently, we found that in Bacillus subtilis glucose induces the expression of the extracellular sigma factor genes sigX and sigM through the acetylation of CshA (RNA helicase), which associates with RNA polymerase (RNAP). We performed a transposon mutagenesis screen for mutants with no glucose induction (GI) of sigX-lacZ. While screening for such mutants, we recently found that the GI of sigX/M involves YlxR, a nucleoid-associated protein (NAP) that regulates nearly 400 genes, including metabolic genes. It has been shown that acetylated CshA positively regulates expression of ylxR-containing operon. Here, we report additional mutations in yqfO or tsaD required for the GI of sigX. YqfO contains a universally conserved domain with unknown function. YqfO and YlxR were found to regulate expression of the tsaEBD-containing operon. Mutational analysis using lacZ fusions revealed the adenine-rich cis-element for YlxR. TsaD is a component of the TsaEBD enzyme required for the synthesis of threonylcarbamoyl adenosine (t 6A). The t 6A modification of tRNA is universal across the three domains of life. Western blot analysis showed that the tsaD mutation in the presence of glucose reduced levels of soluble PdhA, PdhB, and PdhD, which are subunits of the pyruvate dehydrogenase complex (PDHc). This resulted in severely defective PDHc function and thus reduced concentrations of cellular acetyl-CoA, a reaction product of PDHc and plausible source for CshA acetylation. Thus, we discuss a suggested glucose-responsive system (GRS) involving self-reinforcing CshA acetylation. This self-reinforcing pathway may contribute to the maintenance of the acetyl-CoA pool for protein acetylation.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          Bacterial nucleoid-associated proteins, nucleoid structure and gene expression.

          Emerging models of the bacterial nucleoid show that nucleoid-associated proteins (NAPs) and transcription contribute in combination to the dynamic nature of nucleoid structure. NAPs and other DNA-binding proteins that display gene-silencing and anti-silencing activities are emerging as key antagonistic regulators of nucleoid structure. Furthermore, it is becoming clear that the boundary between NAPs and conventional transcriptional regulators is quite blurred and that NAPs facilitate the evolution of novel gene regulatory circuits. Here, NAP biology is considered from the standpoints of both gene regulation and nucleoid structure.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Optimization of Codon Translation Rates via tRNA Modifications Maintains Proteome Integrity

            Summary Proteins begin to fold as they emerge from translating ribosomes. The kinetics of ribosome transit along a given mRNA can influence nascent chain folding, but the extent to which individual codon translation rates impact proteome integrity remains unknown. Here, we show that slower decoding of discrete codons elicits widespread protein aggregation in vivo. Using ribosome profiling, we find that loss of anticodon wobble uridine (U34) modifications in a subset of tRNAs leads to ribosome pausing at their cognate codons in S. cerevisiae and C. elegans. Cells lacking U34 modifications exhibit gene expression hallmarks of proteotoxic stress, accumulate aggregates of endogenous proteins, and are severely compromised in clearing stress-induced protein aggregates. Overexpression of hypomodified tRNAs alleviates ribosome pausing, concomitantly restoring protein homeostasis. Our findings demonstrate that modified U34 is an evolutionarily conserved accelerator of decoding and reveal an unanticipated role for tRNA modifications in maintaining proteome integrity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The mechanisms of carbon catabolite repression in bacteria.

              Carbon catabolite repression (CCR) is the paradigm of cellular regulation. CCR happens when bacteria are exposed to two or more carbon sources and one of them is preferentially utilised (frequently glucose). CCR is often mediated by several mechanisms, which can either affect the synthesis of catabolic enzymes via global or specific regulators or inhibit the uptake of a carbon source and thus the formation of the corresponding inducer. The major CCR mechanisms operative in Enterobacteriaceae and Firmicutes are quite different, but in both types of organisms components of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) and protein phosphorylation play a major role. PTS-independent CCR mechanisms are operative in several other bacteria.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                01 May 2019
                2019
                : 10
                : 923
                Affiliations
                [1] 1Institute of Oceanic Research and Development, Tokai University , Shizuoka, Japan
                [2] 2Department of Frontier Bioscience, Hosei University , Koganei, Japan
                [3] 3Research Center for Micro-Nano Technology, Hosei University , Koganei, Japan
                Author notes

                Edited by: Ivan Mijakovic, Chalmers University of Technology, Sweden

                Reviewed by: Alan J. Wolfe, Loyola University Chicago, United States; Valerie De Crecy-Lagard, University of Florida, United States

                *Correspondence: Mitsuo Ogura, oguram@ 123456scc.u-tokai.ac.jp

                Present address: Kimihiro Abe, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan

                This article was submitted to Microbial Physiology and Metabolism, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2019.00923
                6504816
                31118925
                e174e802-f6d6-452c-b1ee-a7caa0968673
                Copyright © 2019 Ogura, Sato and Abe.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 30 October 2018
                : 11 April 2019
                Page count
                Figures: 7, Tables: 1, Equations: 0, References: 66, Pages: 15, Words: 0
                Funding
                Funded by: Japan Society for the Promotion of Science 10.13039/501100001691
                Award ID: 15K07367
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                protein lysine acetylation,transposon mutagenesis,translational control,rna polymerase,universal trna modification

                Comments

                Comment on this article