89
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evolution of eye development in the darkness of caves: adaptation, drift, or both?

      review-article
      1 , , 2
      EvoDevo
      BioMed Central
      Astyanax, lens, retina, transcriptome, population biology

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Animals inhabiting the darkness of caves are generally blind and de-pigmented, regardless of the phylum they belong to. Survival in this environment is an enormous challenge, the most obvious being to find food and mates without the help of vision, and the loss of eyes in cave animals is often accompanied by an enhancement of other sensory apparatuses. Here we review the recent literature describing developmental biology and molecular evolution studies in order to discuss the evolutionary mechanisms underlying adaptation to life in the dark. We conclude that both genetic drift (neutral hypothesis) and direct and indirect selection (selective hypothesis) occurred together during the loss of eyes in cave animals. We also identify some future directions of research to better understand adaptation to total darkness, for which integrative analyses relying on evo-devo approaches associated with thorough ecological and population genomic studies should shed some light.

          Related collections

          Most cited references76

          • Record: found
          • Abstract: found
          • Article: not found

          The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana.

          To take complete advantage of information on within-species polymorphism and divergence from close relatives, one needs to know the rate and the molecular spectrum of spontaneous mutations. To this end, we have searched for de novo spontaneous mutations in the complete nuclear genomes of five Arabidopsis thaliana mutation accumulation lines that had been maintained by single-seed descent for 30 generations. We identified and validated 99 base substitutions and 17 small and large insertions and deletions. Our results imply a spontaneous mutation rate of 7 x 10(-9) base substitutions per site per generation, the majority of which are G:C-->A:T transitions. We explain this very biased spectrum of base substitution mutations as a result of two main processes: deamination of methylated cytosines and ultraviolet light-induced mutagenesis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The genomic signature of dog domestication reveals adaptation to a starch-rich diet.

            The domestication of dogs was an important episode in the development of human civilization. The precise timing and location of this event is debated and little is known about the genetic changes that accompanied the transformation of ancient wolves into domestic dogs. Here we conduct whole-genome resequencing of dogs and wolves to identify 3.8 million genetic variants used to identify 36 genomic regions that probably represent targets for selection during dog domestication. Nineteen of these regions contain genes important in brain function, eight of which belong to nervous system development pathways and potentially underlie behavioural changes central to dog domestication. Ten genes with key roles in starch digestion and fat metabolism also show signals of selection. We identify candidate mutations in key genes and provide functional support for an increased starch digestion in dogs relative to wolves. Our results indicate that novel adaptations allowing the early ancestors of modern dogs to thrive on a diet rich in starch, relative to the carnivorous diet of wolves, constituted a crucial step in the early domestication of dogs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genetic and developmental basis of evolutionary pelvic reduction in threespine sticklebacks.

              Hindlimb loss has evolved repeatedly in many different animals by means of molecular mechanisms that are still unknown. To determine the number and type of genetic changes underlying pelvic reduction in natural populations, we carried out genetic crosses between threespine stickleback fish with complete or missing pelvic structures. Genome-wide linkage mapping shows that pelvic reduction is controlled by one major and four minor chromosome regions. Pitx1 maps to the major chromosome region controlling most of the variation in pelvic size. Pelvic-reduced fish show the same left-right asymmetry seen in Pitx1 knockout mice, but do not show changes in Pitx1 protein sequence. Instead, pelvic-reduced sticklebacks show site-specific regulatory changes in Pitx1 expression, with reduced or absent expression in pelvic and caudal fin precursors. Regulatory mutations in major developmental control genes may provide a mechanism for generating rapid skeletal changes in natural populations, while preserving the essential roles of these genes in other processes.
                Bookmark

                Author and article information

                Contributors
                Journal
                EvoDevo
                Evodevo
                EvoDevo
                BioMed Central
                2041-9139
                2013
                30 September 2013
                : 4
                : 26
                Affiliations
                [1 ]DECA group, Neurobiology & Development Laboratory, CNRS, Gif sur Yvette, France
                [2 ]LEGS, CNRS, Gif sur Yvette and Université Paris Diderot, Sorbonne Paris Cité, France
                Article
                2041-9139-4-26
                10.1186/2041-9139-4-26
                3849642
                24079393
                e16013b6-5bb4-4429-bd22-2b8d01073268
                Copyright © 2013 Rétaux and Casane; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 5 April 2013
                : 5 August 2013
                Categories
                Review

                Developmental biology
                astyanax,lens,retina,transcriptome,population biology
                Developmental biology
                astyanax, lens, retina, transcriptome, population biology

                Comments

                Comment on this article