1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      NiS2/NiFe LDH/g-C3N4 ternary heterostructure-based label-free photoelectrochemical aptasensing for highly sensitive determination of enrofloxacin

      , , , , , , ,
      Materials Today Chemistry
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Catalytic applications of layered double hydroxides: recent advances and perspectives.

          This review surveys recent advances in the applications of layered double hydroxides (LDHs) in heterogeneous catalysis. By virtue of the flexible tunability and uniform distribution of metal cations in the brucite-like layers and the facile exchangeability of intercalated anions, LDHs-both as directly prepared or after thermal treatment and/or reduction-have found many applications as stable and recyclable heterogeneous catalysts or catalyst supports for a variety of reactions with high industrial and academic importance. A major challenge in this rapidly growing field is to simultaneously improve the activity, selectivity and stability of these LDH-based materials by developing ways of tailoring the electronic structure of the catalysts and supports. Therefore, this Review article is mainly focused on the most recent developments in smart design strategies for LDH materials and the potential catalytic applications of the resulting materials.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4.

            Electronic structure intrinsically controls the light absorbance, redox potential, charge-carrier mobility, and consequently, photoreactivity of semiconductor photocatalysts. The conventional approach of modifying the electronic structure of a semiconductor photocatalyst for a wider absorption range by anion doping operates at the cost of reduced redox potentials and/or charge-carrier mobility, so that its photoreactivity is usually limited and some important reactions may not occur at all. Here, we report sulfur-doped graphitic C(3)N(4) (C(3)N(4-x)S(x)) with a unique electronic structure that displays an increased valence bandwidth in combination with an elevated conduction band minimum and a slightly reduced absorbance. The C(3)N(4-x)S(x) shows a photoreactivity of H(2) evolution 7.2 and 8.0 times higher than C(3)N(4) under lambda > 300 and 420 nm, respectively. More strikingly, the complete oxidation process of phenol under lambda > 400 nm can occur for sulfur-doped C(3)N(4), which is impossible for C(3)N(4) even under lambda > 300 nm. The homogeneous substitution of sulfur for lattice nitrogen and a concomitant quantum confinement effect are identified as the cause of this unique electronic structure and, consequently, the excellent photoreactivity of C(3)N(4-x)S(x). The results acquired may shed light on general doping strategies for designing potentially efficient photocatalysts.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution

              NiFe and CoFe (MFe) layered double hydroxides (LDHs) are among the most active electrocatalysts for the alkaline oxygen evolution reaction (OER). Herein, we combine electrochemical measurements, operando X-ray scattering and absorption spectroscopy, and density functional theory (DFT) calculations to elucidate the catalytically active phase, reaction center and the OER mechanism. We provide the first direct atomic-scale evidence that, under applied anodic potentials, MFe LDHs oxidize from as-prepared α-phases to activated γ-phases. The OER-active γ-phases are characterized by about 8% contraction of the lattice spacing and switching of the intercalated ions. DFT calculations reveal that the OER proceeds via a Mars van Krevelen mechanism. The flexible electronic structure of the surface Fe sites, and their synergy with nearest-neighbor M sites through formation of O-bridged Fe-M reaction centers, stabilize OER intermediates that are unfavorable on pure M-M centers and single Fe sites, fundamentally accounting for the high catalytic activity of MFe LDHs.
                Bookmark

                Author and article information

                Contributors
                Journal
                Materials Today Chemistry
                Materials Today Chemistry
                Elsevier BV
                24685194
                June 2022
                June 2022
                : 24
                : 100845
                Article
                10.1016/j.mtchem.2022.100845
                e13b2ec8-8383-4807-bfbc-145e4ba007e3
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article