4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Quantification and characterization of microplastics in blue mussels (Mytilus edulis): protocol setup and preliminary data on the contamination of the French Atlantic coast

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L).

          Plastics debris is accumulating in the environment and is fragmenting into smaller pieces; as it does, the potential for ingestion by animals increases. The consequences of macroplastic debris for wildlife are well documented, however the impacts of microplastic (< 1 mm) are poorly understood. The mussel, Mytilus edulis, was used to investigate ingestion, translocation, and accumulation of this debris. Initial experiments showed that upon ingestion, microplastic accumulated in the gut. Mussels were subsequently exposed to treatments containing seawater and microplastic (3.0 or 9.6 microm). After transfer to clean conditions, microplastic was tracked in the hemolymph. Particles translocated from the gut to the circulatory system within 3 days and persisted for over 48 days. Abundance of microplastic was greatest after 12 days and declined thereafter. Smaller particles were more abundant than larger particles and our data indicate as plastic fragments into smaller particles, the potential for accumulation in the tissues of an organism increases. The short-term pulse exposure used here did not result in significant biological effects. However, plastics are exceedingly durable and so further work using a wider range of organisms, polymers, and periods of exposure will be required to establish the biological consequences of this debris.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Plastics recycling: challenges and opportunities.

            Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3-4% is expended to provide energy for their manufacture. A major portion of plastic produced each year is used to make disposable items of packaging or other short-lived products that are discarded within a year of manufacture. These two observations alone indicate that our current use of plastics is not sustainable. In addition, because of the durability of the polymers involved, substantial quantities of discarded end-of-life plastics are accumulating as debris in landfills and in natural habitats worldwide. Recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today. Recycling provides opportunities to reduce oil usage, carbon dioxide emissions and the quantities of waste requiring disposal. Here, we briefly set recycling into context against other waste-reduction strategies, namely reduction in material use through downgauging or product reuse, the use of alternative biodegradable materials and energy recovery as fuel. While plastics have been recycled since the 1970s, the quantities that are recycled vary geographically, according to plastic type and application. Recycling of packaging materials has seen rapid expansion over the last decades in a number of countries. Advances in technologies and systems for the collection, sorting and reprocessing of recyclable plastics are creating new opportunities for recycling, and with the combined actions of the public, industry and governments it may be possible to divert the majority of plastic waste from landfills to recycling over the next decades.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microplastics in bivalves cultured for human consumption.

              Microplastics are present throughout the marine environment and ingestion of these plastic particles (<1 mm) has been demonstrated in a laboratory setting for a wide array of marine organisms. Here, we investigate the presence of microplastics in two species of commercially grown bivalves: Mytilus edulis and Crassostrea gigas. Microplastics were recovered from the soft tissues of both species. At time of human consumption, M. edulis contains on average 0.36 ± 0.07 particles g(-1) (wet weight), while a plastic load of 0.47 ± 0.16 particles g(-1) ww was detected in C. gigas. As a result, the annual dietary exposure for European shellfish consumers can amount to 11,000 microplastics per year. The presence of marine microplastics in seafood could pose a threat to food safety, however, due to the complexity of estimating microplastic toxicity, estimations of the potential risks for human health posed by microplastics in food stuffs is not (yet) possible.
                Bookmark

                Author and article information

                Journal
                Environmental Science and Pollution Research
                Environ Sci Pollut Res
                Springer Science and Business Media LLC
                0944-1344
                1614-7499
                March 2018
                April 5 2017
                March 2018
                : 25
                : 7
                : 6135-6144
                Article
                10.1007/s11356-017-8862-3
                e12ea347-cc50-4d0f-aa21-e25444d4a823
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article