23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Alpha-conotoxins as pharmacological probes of nicotinic acetylcholine receptors

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cysteine-rich peptides from the venom of cone snails ( Conus) target a wide variety of different ion channels. One family of conopeptides, the α-conotoxins, specifically target different isoforms of nicotinic acetylcholine receptors (nAChRs) found both in the neuromuscular junction and central nervous system. This family is further divided into subfamilies based on the number of amino acids between cysteine residues. The exquisite subtype selectivity of certain α-conotoxins has been key to the characterization of native nAChR isoforms involved in modulation of neurotransmitter release, the pathophysiology of Parkinson's disease and nociception. Structure/function characterization of α-conotoxins has led to the development of analogs with improved potency and/or subtype selectivity. Cyclization of the backbone structure and addition of lipophilic moieties has led to improved stability and bioavailability of α-conotoxins, thus paving the way for orally available therapeutics. The recent advances in phylogeny, exogenomics and molecular modeling promises the discovery of an even greater number of α-conotoxins and analogs with improved selectivity for specific subtypes of nAChRs.

          Related collections

          Most cited references127

          • Record: found
          • Abstract: found
          • Article: not found

          Conus venoms: a rich source of novel ion channel-targeted peptides.

          The cone snails (genus Conus) are venomous marine molluscs that use small, structured peptide toxins (conotoxins) for prey capture, defense, and competitor deterrence. Each of the 500 Conus can express approximately 100 different conotoxins, with little overlap between species. An overwhelming majority of these peptides are probably targeted selectively to a specific ion channel. Because conotoxins discriminate between closely related subtypes of ion channels, they are widely used as pharmacological agents in ion channel research, and several have direct diagnostic and therapeutic potential. Large conotoxin families can comprise hundreds or thousands of different peptides; most families have a corresponding ion channel family target (i.e., omega-conotoxins and Ca channels, alpha-conotoxins and nicotinic receptors). Different conotoxin families may have different ligand binding sites on the same ion channel target (i.e., mu-conotoxins and delta-conotoxins to sites 1 and 6 of Na channels, respectively). The individual peptides in a conotoxin family are typically each selectively targeted to a diverse set of different molecular isoforms within the same ion channel family. This review focuses on the targeting specificity of conotoxins and their differential binding to different states of an ion channel.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            alpha10: a determinant of nicotinic cholinergic receptor function in mammalian vestibular and cochlear mechanosensory hair cells.

            We report the cloning and characterization of rat alpha10, a previously unidentified member of the nicotinic acetylcholine receptor (nAChR) subunit gene family. The protein encoded by the alpha10 nAChR subunit gene is most similar to the rat alpha9 nAChR, and both alpha9 and alpha10 subunit genes are transcribed in adult rat mechanosensory hair cells. Injection of Xenopus laevis oocytes with alpha10 cRNA alone or in pairwise combinations with either alpha2-alpha6 or beta2-beta4 subunit cRNAs yielded no detectable ACh-gated currents. However, coinjection of alpha9 and alpha10 cRNAs resulted in the appearance of an unusual nAChR subtype. Compared with homomeric alpha9 channels, the alpha9alpha10 nAChR subtype displays faster and more extensive agonist-mediated desensitization, a distinct current-voltage relationship, and a biphasic response to changes in extracellular Ca(2+) ions. The pharmacological profiles of homomeric alpha9 and heteromeric alpha9alpha10 nAChRs are essentially indistinguishable and closely resemble those reported for endogenous cholinergic eceptors found in vertebrate hair cells. Our data suggest that efferent modulation of hair cell function occurs, at least in part, through heteromeric nAChRs assembled from both alpha9 and alpha10 subunits.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Engineering stable peptide toxins by means of backbone cyclization: stabilization of the alpha-conotoxin MII.

              Conotoxins (CTXs), with their exquisite specificity and potency, have recently created much excitement as drug leads. However, like most peptides, their beneficial activities may potentially be undermined by susceptibility to proteolysis in vivo. By cyclizing the alpha-CTX MII by using a range of linkers, we have engineered peptides that preserve their full activity but have greatly improved resistance to proteolytic degradation. The cyclic MII analogue containing a seven-residue linker joining the N and C termini was as active and selective as the native peptide for native and recombinant neuronal nicotinic acetylcholine receptor subtypes present in bovine chromaffin cells and expressed in Xenopus oocytes, respectively. Furthermore, its resistance to proteolysis against a specific protease and in human plasma was significantly improved. More generally, to our knowledge, this report is the first on the cyclization of disulfide-rich toxins. Cyclization strategies represent an approach for stabilizing bioactive peptides while keeping their full potencies and should boost applications of peptide-based drugs in human medicine.
                Bookmark

                Author and article information

                Journal
                Acta Pharmacol Sin
                Acta Pharmacol. Sin
                Acta Pharmacologica Sinica
                Nature Publishing Group
                1671-4083
                1745-7254
                June 2009
                18 May 2009
                : 30
                : 6
                : 771-783
                Affiliations
                [1 ]Department of Biology, University of Utah , Salt Lake City, UT 84112, USA
                [2 ]Department of Psychiatry, University of Utah , Salt Lake City, UT 84112, USA
                Author notes
                Article
                aps200947
                10.1038/aps.2009.47
                2814007
                19448650
                e124454c-1caa-41d8-a933-9ef1b54e06fd
                Copyright © 2009 CPS and SIMM
                History
                : 16 February 2009
                : 24 March 2009
                Categories
                Review

                Pharmacology & Pharmaceutical medicine
                conus,nicotine,alpha-conotoxin,muscle nicotinic acetylcholine receptor,neuronal nicotinc acetylcholine receptor,torpedo,achbp

                Comments

                Comment on this article