4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transfer learning strategies for solar power forecasting under data scarcity

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Accurately forecasting solar plants production is critical for balancing supply and demand and for scheduling distribution networks operation in the context of inclusive smart cities and energy communities. However, the problem becomes more demanding, when there is insufficient amount of data to adequately train forecasting models, due to plants being recently installed or because of lack of smart-meters. Transfer learning (TL) offers the capability of transferring knowledge from the source domain to different target domains to resolve related problems. This study uses the stacked Long Short-Term Memory (LSTM) model with three TL strategies to provide accurate solar plant production forecasts. TL is exploited both for weight initialization of the LSTM model and for feature extraction, using different freezing approaches. The presented TL strategies are compared to the conventional non-TL model, as well as to the smart persistence model, at forecasting the hourly production of 6 solar plants. Results indicate that TL models significantly outperform the conventional one, achieving 12.6% accuracy improvement in terms of RMSE and 16.3% in terms of forecast skill index with 1 year of training data. The gap between the two approaches becomes even bigger when fewer training data are available (especially in the case of a 3-month training set), breaking new ground in power production forecasting of newly installed solar plants and rendering TL a reliable tool in the hands of self-producers towards the ultimate goal of energy balancing and demand response management from an early stage.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          Long Short-Term Memory

          Learning to store information over extended time intervals by recurrent backpropagation takes a very long time, mostly because of insufficient, decaying error backflow. We briefly review Hochreiter's (1991) analysis of this problem, then address it by introducing a novel, efficient, gradient-based method called long short-term memory (LSTM). Truncating the gradient where this does not do harm, LSTM can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units. Multiplicative gate units learn to open and close access to the constant error flow. LSTM is local in space and time; its computational complexity per time step and weight is O(1). Our experiments with artificial data involve local, distributed, real-valued, and noisy pattern representations. In comparisons with real-time recurrent learning, back propagation through time, recurrent cascade correlation, Elman nets, and neural sequence chunking, LSTM leads to many more successful runs, and learns much faster. LSTM also solves complex, artificial long-time-lag tasks that have never been solved by previous recurrent network algorithms.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A Survey on Transfer Learning

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              A survey of transfer learning

                Bookmark

                Author and article information

                Contributors
                esarmas@epu.ntua.gr
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                27 August 2022
                27 August 2022
                2022
                : 12
                : 14643
                Affiliations
                [1 ]GRID grid.4241.3, ISNI 0000 0001 2185 9808, Decision Support Systems Laboratory, School of Electrical and Computer Engineering, , National Technical University of Athens, ; 15780 Athens, Greece
                [2 ]HOLISTIC IKE, 15343 Athens, Greece
                Author information
                http://orcid.org/0000-0002-1330-6872
                Article
                18516
                10.1038/s41598-022-18516-x
                9420121
                36030346
                e107e5be-2ad7-44ee-9686-a75ade84687d
                © The Author(s) 2022

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 8 March 2022
                : 12 August 2022
                Categories
                Article
                Custom metadata
                © The Author(s) 2022

                Uncategorized
                solar cells,electrical and electronic engineering,computer science
                Uncategorized
                solar cells, electrical and electronic engineering, computer science

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content299

                Cited by9

                Most referenced authors482