16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identification of a six-gene signature predicting overall survival for hepatocellular carcinoma

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Hepatocellular carcinoma (HCC) remains a major challenge for public health worldwide. Considering the great heterogeneity of HCC, more accurate prognostic models are urgently needed. To identify a robust prognostic gene signature, we conduct this study.

          Materials and methods

          Level 3 mRNA expression profiles and clinicopathological data were obtained in The Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC). GSE14520 dataset from the gene expression omnibus (GEO) database was downloaded to further validate the results in TCGA. Differentially expressed mRNAs between HCC and normal tissue were investigated. Univariate Cox regression analysis and lasso Cox regression model were performed to identify and construct the prognostic gene signature. Time-dependent receiver operating characteristic (ROC), Kaplan–Meier curve, multivariate Cox regression analysis, nomogram, and decision curve analysis (DCA) were used to assess the prognostic capacity of the six-gene signature. The prognostic value of the gene signature was further validated in independent GSE14520 cohort. Gene Set Enrichment Analyses (GSEA) was performed to further understand the underlying molecular mechanisms. The performance of the prognostic signature in differentiating between normal liver tissues and HCC were also investigated.

          Results

          A novel six-gene signature (including CSE1L, CSTB, MTHFR, DAGLA, MMP10, and GYS2) was established for HCC prognosis prediction. The ROC curve showed good performance in survival prediction in both the TCGA HCC cohort and the GSE14520 validation cohort. The six-gene signature could stratify patients into a high- and low-risk group which had significantly different survival. Cox regression analysis showed that the six-gene signature could independently predict OS. Nomogram including the six-gene signature was established and shown some clinical net benefit. Furthermore, GSEA revealed several significantly enriched oncological signatures and various metabolic process, which might help explain the underlying molecular mechanisms. Besides, the prognostic signature showed a strong ability for differentiating HCC from normal tissues.

          Conclusions

          Our study established a novel six-gene signature and nomogram to predict overall survival of HCC, which may help in clinical decision making for individual treatment.

          Electronic supplementary material

          The online version of this article (10.1186/s12935-019-0858-2) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal.

          The cBioPortal for Cancer Genomics (http://cbioportal.org) provides a Web resource for exploring, visualizing, and analyzing multidimensional cancer genomics data. The portal reduces molecular profiling data from cancer tissues and cell lines into readily understandable genetic, epigenetic, gene expression, and proteomic events. The query interface combined with customized data storage enables researchers to interactively explore genetic alterations across samples, genes, and pathways and, when available in the underlying data, to link these to clinical outcomes. The portal provides graphical summaries of gene-level data from multiple platforms, network visualization and analysis, survival analysis, patient-centric queries, and software programmatic access. The intuitive Web interface of the portal makes complex cancer genomics profiles accessible to researchers and clinicians without requiring bioinformatics expertise, thus facilitating biological discoveries. Here, we provide a practical guide to the analysis and visualization features of the cBioPortal for Cancer Genomics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cloning of the first sn1-DAG lipases points to the spatial and temporal regulation of endocannabinoid signaling in the brain

            Diacylglycerol (DAG) lipase activity is required for axonal growth during development and for retrograde synaptic signaling at mature synapses. This enzyme synthesizes the endocannabinoid 2-arachidonoyl-glycerol (2-AG), and the CB1 cannabinoid receptor is also required for the above responses. We now report on the cloning and enzymatic characterization of the first specific sn-1 DAG lipases. Two closely related genes have been identified and their expression in cells correlated with 2-AG biosynthesis and release. The expression of both enzymes changes from axonal tracts in the embryo to dendritic fields in the adult, and this correlates with the developmental change in requirement for 2-AG synthesis from the pre- to the postsynaptic compartment. This switch provides a possible explanation for a fundamental change in endocannabinoid function during brain development. Identification of these enzymes may offer new therapeutic opportunities for a wide range of disorders.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nicotinamide N-methyltransferase knockdown protects against diet-induced obesity.

              In obesity and type 2 diabetes, Glut4 glucose transporter expression is decreased selectively in adipocytes. Adipose-specific knockout or overexpression of Glut4 alters systemic insulin sensitivity. Here we show, using DNA array analyses, that nicotinamide N-methyltransferase (Nnmt) is the most strongly reciprocally regulated gene when comparing gene expression in white adipose tissue (WAT) from adipose-specific Glut4-knockout or adipose-specific Glut4-overexpressing mice with their respective controls. NNMT methylates nicotinamide (vitamin B3) using S-adenosylmethionine (SAM) as a methyl donor. Nicotinamide is a precursor of NAD(+), an important cofactor linking cellular redox states with energy metabolism. SAM provides propylamine for polyamine biosynthesis and donates a methyl group for histone methylation. Polyamine flux including synthesis, catabolism and excretion, is controlled by the rate-limiting enzymes ornithine decarboxylase (ODC) and spermidine-spermine N(1)-acetyltransferase (SSAT; encoded by Sat1) and by polyamine oxidase (PAO), and has a major role in energy metabolism. We report that NNMT expression is increased in WAT and liver of obese and diabetic mice. Nnmt knockdown in WAT and liver protects against diet-induced obesity by augmenting cellular energy expenditure. NNMT inhibition increases adipose SAM and NAD(+) levels and upregulates ODC and SSAT activity as well as expression, owing to the effects of NNMT on histone H3 lysine 4 methylation in adipose tissue. Direct evidence for increased polyamine flux resulting from NNMT inhibition includes elevated urinary excretion and adipocyte secretion of diacetylspermine, a product of polyamine metabolism. NNMT inhibition in adipocytes increases oxygen consumption in an ODC-, SSAT- and PAO-dependent manner. Thus, NNMT is a novel regulator of histone methylation, polyamine flux and NAD(+)-dependent SIRT1 signalling, and is a unique and attractive target for treating obesity and type 2 diabetes.
                Bookmark

                Author and article information

                Contributors
                +0086-13750560390 , liugaom88@foxmail.com
                +0086-15916514159 , zenghd8312@163.com
                +0086-13823882069 , ycz6662003@163.com
                +0086-13823832715 , javee@126.com
                Journal
                Cancer Cell Int
                Cancer Cell Int
                Cancer Cell International
                BioMed Central (London )
                1475-2867
                21 May 2019
                21 May 2019
                2019
                : 19
                : 138
                Affiliations
                GRID grid.459766.f, Department of Hepatobiliary Surgery, , Meizhou People’s Hospital, ; No. 38 Huangtang Road, Meizhou, 514000 China
                Author information
                http://orcid.org/0000-0002-8640-2427
                Article
                858
                10.1186/s12935-019-0858-2
                6528264
                31139015
                e0d720f6-badf-439f-9e30-61231d0ba03a
                © The Author(s) 2019

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 26 January 2019
                : 13 May 2019
                Funding
                Funded by: Guangdong Medical Research Foundation (CN)
                Award ID: 2016102120351019
                Award Recipient :
                Categories
                Primary Research
                Custom metadata
                © The Author(s) 2019

                Oncology & Radiotherapy
                hepatocellular carcinoma,tcga,geo,prognosis,gene signature
                Oncology & Radiotherapy
                hepatocellular carcinoma, tcga, geo, prognosis, gene signature

                Comments

                Comment on this article