6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Diagnostics of Melanocytic Skin Tumours by a Combination of Ultrasonic, Dermatoscopic and Spectrophotometric Image Parameters

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Dermatoscopy, high-frequency ultrasonography (HFUS) and spectrophotometry are promising quantitative imaging techniques for the investigation and diagnostics of cutaneous melanocytic tumors. In this paper, we propose the hybrid technique and automatic prognostic models by combining the quantitative image parameters of ultrasonic B-scan images, dermatoscopic and spectrophotometric images (melanin, blood and collagen) to increase accuracy in the diagnostics of cutaneous melanoma. The extracted sets of various quantitative parameters and features of dermatoscopic, ultrasonic and spectrometric images were used to develop the four different classification models: logistic regression (LR), linear discriminant analysis (LDA), support vector machine (SVM) and Naive Bayes. The results were compared to the combination of only two techniques out of three. The reliable differentiation between melanocytic naevus and melanoma were achieved by the proposed technique. The accuracy of more than 90% was estimated in the case of LR, LDA and SVM by the proposed method.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods

          Estimates of the worldwide incidence and mortality from 36 cancers and for all cancers combined for the year 2018 are now available in the GLOBOCAN 2018 database, compiled and disseminated by the International Agency for Research on Cancer (IARC). This paper reviews the sources and methods used in compiling the cancer statistics in 185 countries. The validity of the national estimates depends upon the representativeness of the source information, and to take into account possible sources of bias, uncertainty intervals are now provided for the estimated sex- and site-specific all-ages number of new cancer cases and cancer deaths. We briefly describe the key results globally and by world region. There were an estimated 18.1 million (95% UI: 17.5-18.7 million) new cases of cancer (17 million excluding non-melanoma skin cancer) and 9.6 million (95% UI: 9.3-9.8 million) deaths from cancer (9.5 million excluding non-melanoma skin cancer) worldwide in 2018.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dermatologist-level classification of skin cancer with deep neural networks

            Skin cancer, the most common human malignancy, is primarily diagnosed visually, beginning with an initial clinical screening and followed potentially by dermoscopic analysis, a biopsy and histopathological examination. Automated classification of skin lesions using images is a challenging task owing to the fine-grained variability in the appearance of skin lesions. Deep convolutional neural networks (CNNs) show potential for general and highly variable tasks across many fine-grained object categories. Here we demonstrate classification of skin lesions using a single CNN, trained end-to-end from images directly, using only pixels and disease labels as inputs. We train a CNN using a dataset of 129,450 clinical images—two orders of magnitude larger than previous datasets—consisting of 2,032 different diseases. We test its performance against 21 board-certified dermatologists on biopsy-proven clinical images with two critical binary classification use cases: keratinocyte carcinomas versus benign seborrheic keratoses; and malignant melanomas versus benign nevi. The first case represents the identification of the most common cancers, the second represents the identification of the deadliest skin cancer. The CNN achieves performance on par with all tested experts across both tasks, demonstrating an artificial intelligence capable of classifying skin cancer with a level of competence comparable to dermatologists. Outfitted with deep neural networks, mobile devices can potentially extend the reach of dermatologists outside of the clinic. It is projected that 6.3 billion smartphone subscriptions will exist by the year 2021 (ref. 13) and can therefore potentially provide low-cost universal access to vital diagnostic care.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more "personalized" approach to cancer staging.

              The American Joint Committee on Cancer (AJCC) staging manual has become the benchmark for classifying patients with cancer, defining prognosis, and determining the best treatment approaches. Many view the primary role of the tumor, lymph node, metastasis (TNM) system as that of a standardized classification system for evaluating cancer at a population level in terms of the extent of disease, both at initial presentation and after surgical treatment, and the overall impact of improvements in cancer treatment. The rapid evolution of knowledge in cancer biology and the discovery and validation of biologic factors that predict cancer outcome and response to treatment with better accuracy have led some cancer experts to question the utility of a TNM-based approach in clinical care at an individualized patient level. In the Eighth Edition of the AJCC Cancer Staging Manual, the goal of including relevant, nonanatomic (including molecular) factors has been foremost, although changes are made only when there is strong evidence for inclusion. The editorial board viewed this iteration as a proactive effort to continue to build the important bridge from a "population-based" to a more "personalized" approach to patient classification, one that forms the conceptual framework and foundation of cancer staging in the era of precision molecular oncology. The AJCC promulgates best staging practices through each new edition in an effort to provide cancer care providers with a powerful, knowledge-based resource for the battle against cancer. In this commentary, the authors highlight the overall organizational and structural changes as well as "what's new" in the Eighth Edition. It is hoped that this information will provide the reader with a better understanding of the rationale behind the aggregate proposed changes and the exciting developments in the upcoming edition. CA Cancer J Clin 2017;67:93-99. © 2017 American Cancer Society.
                Bookmark

                Author and article information

                Journal
                Diagnostics (Basel)
                Diagnostics (Basel)
                diagnostics
                Diagnostics
                MDPI
                2075-4418
                26 August 2020
                September 2020
                : 10
                : 9
                : 632
                Affiliations
                [1 ]Ultrasound Research Institute, Kaunas University of Technology, K. Baršausko St. 59, LT-51423 Kaunas, Lithuania; renaldas.raisutis@ 123456ktu.lt
                [2 ]Department of Skin and Venereal Diseases, Lithuanian University of Health Sciences, Eivenių str. 2, LT-50161 Kaunas, Lithuania; jokubas@ 123456liutkus.lt (J.L.); skaidra.valiukeviciene@ 123456kaunoklinikos.lt (S.V.)
                Author notes
                [* ]Correspondence: k.tiwari@ 123456ktu.lt ; Tel.: +370-64694913
                Author information
                https://orcid.org/0000-0001-8937-3636
                https://orcid.org/0000-0003-2408-5427
                Article
                diagnostics-10-00632
                10.3390/diagnostics10090632
                7555363
                32858850
                e0cc5ba1-d572-4cec-a007-a433f637b9d8
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 27 July 2020
                : 25 August 2020
                Categories
                Article

                melanoma,melanocytic tumor,dermatoscopy,ultrasonography,spectrophotometry,classification,diagnostics

                Comments

                Comment on this article