11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Revisiting the Impact of Neurodegenerative Proteins in Epilepsy: Focus on Alpha-Synuclein, Beta-Amyloid, and Tau

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lack of disease-modifying therapy against epileptogenesis reflects the complexity of the disease pathogenesis as well as the high demand to explore novel treatment strategies. In the pursuit of developing new therapeutic strategies against epileptogenesis, neurodegenerative proteins have recently gained increased attention. Owing to the fact that neurodegenerative disease and epileptogenesis possibly share a common underlying mechanism, targeting neurodegenerative proteins against epileptogenesis might represent a promising therapeutic approach. Herein, we review the association of neurodegenerative proteins, such as α-synuclein, amyloid-beta (Aβ), and tau protein, with epilepsy. Providing insight into the α-synuclein, Aβ and tau protein-mediated neurodegeneration mechanisms, and their implication in epileptogenesis will pave the way towards the development of new agents and treatment strategies.

          Related collections

          Most cited references94

          • Record: found
          • Abstract: found
          • Article: not found

          Epilepsy in adults

          Epilepsy is one of the most common serious brain conditions, affecting over 70 million people worldwide. Its incidence has a bimodal distribution with the highest risk in infants and older age groups. Progress in genomic technology is exposing the complex genetic architecture of the common types of epilepsy, and is driving a paradigm shift. Epilepsy is a symptom complex with multiple risk factors and a strong genetic predisposition rather than a condition with a single expression and cause. These advances have resulted in the new classification of epileptic seizures and epilepsies. A detailed clinical history and a reliable eyewitness account of a seizure are the cornerstones of the diagnosis. Ancillary investigations can help to determine cause and prognosis. Advances in brain imaging are helping to identify the structural and functional causes and consequences of the epilepsies. Comorbidities are increasingly recognised as important aetiological and prognostic markers. Antiseizure medication might suppress seizures in up to two-thirds of all individuals but do not alter long-term prognosis. Epilepsy surgery is the most effective way to achieve long-term seizure freedom in selected individuals with drug-resistant focal epilepsy, but it is probably not used enough. With improved understanding of the gradual development of epilepsy, epigenetic determinants, and pharmacogenomics comes the hope for better, disease-modifying, or even curative, pharmacological and non-pharmacological treatment strategies. Other developments are clinical implementation of seizure detection devices and new neuromodulation techniques, including responsive neural stimulation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Aggregation of alpha-synuclein in Lewy bodies of sporadic Parkinson's disease and dementia with Lewy bodies.

            Lewy bodies (LBs) are hallmark lesions of degenerating neurons in the brains of patients with Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Recently, a point mutation in the gene encoding the presynaptic alpha-synuclein protein was identified in some autosomal-dominantly inherited familial PD pedigrees, and light microscopic studies demonstrated alpha-synuclein immunoreactivity in LBs of sporadic PD and DLB. To characterize alpha-synuclein in LBs, we raised monoclonal antibodies (MAbs) to LBs purified from DLB brains and obtained a MAb specific for alpha-synuclein that intensely labeled LBs. Light and electron microscopic immunocytochemical studies performed with this MAb as well as other antibodies to alpha-and beta-synuclein showed that alpha-synuclein, but not beta-synuclein, is a component of LBs in sporadic PD and DLB. Western blot analyses of highly purified LBs from DLB brains showed that full-length as well as partially truncated and insoluble aggregates of alpha-synuclein are deposited in LBs. Thus, these data strongly implicate alpha-synuclein in the formation of LBs and the selective degeneration of neurons in sporadic PD and DLB.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The pilocarpine model of temporal lobe epilepsy

              Understanding the pathophysiogenesis of temporal lobe epilepsy (TLE) largely rests on the use of models of status epilepticus (SE), as in the case of the pilocarpine model. The main features of TLE are: (i) epileptic foci in the limbic system; (ii) an “initial precipitating injury”; (iii) the so-called “latent period”; and (iv) the presence of hippocampal sclerosis leading to reorganization of neuronal networks. Many of these characteristics can be reproduced in rodents by systemic injection of pilocarpine; in this animal model, SE is followed by a latent period and later by the appearance of spontaneous recurrent seizures (SRSs). These processes are, however, influenced by experimental conditions such as rodent species, strain, gender, age, doses and routes of pilocarpine administration, as well as combinations with other drugs administered before and/or after SE. In the attempt to limit these sources of variability, we evaluated the methodological procedures used by several investigators in the pilocarpine model; in particular, we have focused on the behavioural, electrophysiological and histopathological findings obtained with different protocols. We addressed the various experimental approaches published to date, by comparing mortality rates, onset of SRSs, neuronal damage, and network reorganization. Based on the evidence reviewed here, we propose that the pilocarpine model can be a valuable tool to investigate the mechanisms involved in TLE, and even more so when standardized to reduce mortality at the time of pilocarpine injection, differences in latent period duration, variability in the lesion extent, and SRS frequency.
                Bookmark

                Author and article information

                Journal
                Biology (Basel)
                Biology (Basel)
                biology
                Biology
                MDPI
                2079-7737
                12 June 2020
                June 2020
                : 9
                : 6
                : 122
                Affiliations
                [1 ]Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 47500, Malaysia; yam.paudel@ 123456monash.edu (Y.N.P.); Iekhsan.othman@ 123456monash.edu (I.O.)
                [2 ]Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street, 11527 Athens, Greece; angelthal@ 123456med.uoa.gr
                Author notes
                Author information
                https://orcid.org/0000-0002-8804-6331
                https://orcid.org/0000-0002-2701-0618
                https://orcid.org/0000-0001-9225-3678
                https://orcid.org/0000-0001-9865-6224
                Article
                biology-09-00122
                10.3390/biology9060122
                7344698
                32545604
                e0c9ffca-f348-4d0f-b093-94e83027a414
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 20 April 2020
                : 10 June 2020
                Categories
                Review

                neurodegeneration,epileptogenesis,alpha-synuclein,,tau
                neurodegeneration, epileptogenesis, alpha-synuclein, , tau

                Comments

                Comment on this article