10
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Differentiation and Characterization of Excitatory and Inhibitory Synapses by Cryo-electron Tomography and Correlative Microscopy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          As key functional units in neural circuits, different types of neuronal synapses play distinct roles in brain information processing, learning, and memory. Synaptic abnormalities are believed to underlie various neurological and psychiatric disorders. Here, by combining cryo-electron tomography and cryo-correlative light and electron microscopy, we distinguished intact excitatory and inhibitory synapses of cultured hippocampal neurons, and visualized the in situ 3D organization of synaptic organelles and macromolecules in their native state. Quantitative analyses of >100 synaptic tomograms reveal that excitatory synapses contain a mesh-like postsynaptic density (PSD) with thickness ranging from 20 to 50 nm. In contrast, the PSD in inhibitory synapses assumes a thin sheet-like structure ∼12 nm from the postsynaptic membrane. On the presynaptic side, spherical synaptic vesicles (SVs) of 25–60 nm diameter and discus-shaped ellipsoidal SVs of various sizes coexist in both synaptic types, with more ellipsoidal ones in inhibitory synapses. High-resolution tomograms obtained using a Volta phase plate and electron filtering and counting reveal glutamate receptor-like and GABA A receptor-like structures that interact with putative scaffolding and adhesion molecules, reflecting details of receptor anchoring and PSD organization. These results provide an updated view of the ultrastructure of excitatory and inhibitory synapses, and demonstrate the potential of our approach to gain insight into the organizational principles of cellular architecture underlying distinct synaptic functions.

          SIGNIFICANCE STATEMENT To understand functional properties of neuronal synapses, it is desirable to analyze their structure at molecular resolution. We have developed an integrative approach combining cryo-electron tomography and correlative fluorescence microscopy to visualize 3D ultrastructural features of intact excitatory and inhibitory synapses in their native state. Our approach shows that inhibitory synapses contain uniform thin sheet-like postsynaptic densities (PSDs), while excitatory synapses contain previously known mesh-like PSDs. We discovered “discus-shaped” ellipsoidal synaptic vesicles, and their distributions along with regular spherical vesicles in synaptic types are characterized. High-resolution tomograms further allowed identification of putative neurotransmitter receptors and their heterogeneous interaction with synaptic scaffolding proteins. The specificity and resolution of our approach enables precise in situ analysis of ultrastructural organization underlying distinct synaptic functions.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: found
          • Article: not found

          Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type.

          Q Bi, G Bi, M Poo (1998)
          In cultures of dissociated rat hippocampal neurons, persistent potentiation and depression of glutamatergic synapses were induced by correlated spiking of presynaptic and postsynaptic neurons. The relative timing between the presynaptic and postsynaptic spiking determined the direction and the extent of synaptic changes. Repetitive postsynaptic spiking within a time window of 20 msec after presynaptic activation resulted in long-term potentiation (LTP), whereas postsynaptic spiking within a window of 20 msec before the repetitive presynaptic activation led to long-term depression (LTD). Significant LTP occurred only at synapses with relatively low initial strength, whereas the extent of LTD did not show obvious dependence on the initial synaptic strength. Both LTP and LTD depended on the activation of NMDA receptors and were absent in cases in which the postsynaptic neurons were GABAergic in nature. Blockade of L-type calcium channels with nimodipine abolished the induction of LTD and reduced the extent of LTP. These results underscore the importance of precise spike timing, synaptic strength, and postsynaptic cell type in the activity-induced modification of central synapses and suggest that Hebb's rule may need to incorporate a quantitative consideration of spike timing that reflects the narrow and asymmetric window for the induction of synaptic modification.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The postsynaptic architecture of excitatory synapses: a more quantitative view.

            Excitatory (glutamatergic) synapses in the mammalian brain are usually situated on dendritic spines, a postsynaptic microcompartment that also harbors organelles involved in protein synthesis, membrane trafficking, and calcium metabolism. The postsynaptic membrane contains a high concentration of glutamate receptors, associated signaling proteins, and cytoskeletal elements, all assembled by a variety of scaffold proteins into an organized structure called the postsynaptic density (PSD). A complex machine made of hundreds of distinct proteins, the PSD dynamically changes its structure and composition during development and in response to synaptic activity. The molecular size of the PSD and the stoichiometry of many major constituents have been recently measured. The structures of some intact PSD proteins, as well as the spatial arrangement of several proteins within the PSD, have been determined at low resolution by electron microscopy. On the basis of such studies, a more quantitative and geometrically realistic view of PSD architecture is emerging.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Superresolution imaging of chemical synapses in the brain.

              Determination of the molecular architecture of synapses requires nanoscopic image resolution and specific molecular recognition, a task that has so far defied many conventional imaging approaches. Here, we present a superresolution fluorescence imaging method to visualize the molecular architecture of synapses in the brain. Using multicolor, three-dimensional stochastic optical reconstruction microscopy, the distributions of synaptic proteins can be measured with nanometer precision. Furthermore, the wide-field, volumetric imaging method enables high-throughput, quantitative analysis of a large number of synapses from different brain regions. To demonstrate the capabilities of this approach, we have determined the organization of ten protein components of the presynaptic active zone and the postsynaptic density. Variations in synapse morphology, neurotransmitter receptor composition, and receptor distribution were observed both among synapses and across different brain regions. Combination with optogenetics further allowed molecular events associated with synaptic plasticity to be resolved at the single-synapse level. Copyright © 2010 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                J Neurosci
                J. Neurosci
                jneuro
                jneurosci
                J. Neurosci
                The Journal of Neuroscience
                Society for Neuroscience
                0270-6474
                1529-2401
                7 February 2018
                7 February 2018
                : 38
                : 6
                : 1493-1510
                Affiliations
                [1] 1National Laboratory for Physical Sciences at the Microscale,
                [2] 2Chinese Academy of Sciences Key Laboratory of Brain Function and Disease,
                [3] 3School of Life Sciences,
                [4] 4Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Innovation Center for Cell Signaling Network, University of Science and Technology of China, Hefei, Anhui 230026, China,
                [5] 5Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX37BN, United Kingdom,
                [6] 6The California NanoSystems Institute, and
                [7] 7Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California 90095
                Author notes
                Correspondence should be addressed to either of the following: Guo-Qiang Bi, School of Life Science, USTC, 443 Huangshan Road, Hefei, China 230027, gqbi@ 123456ustc.edu.cn ; or Z. Hong Zhou, The California NanoSystems Institute, UCLA, 570 Westwood Plaza, CA 90095, hong.zhou@ 123456ucla.edu

                Author contributions: C.-L. Tao, Y.-T.L., P.Z., P.-M.L., Z.H.Z., and G.-Q.B. designed research; C.-L. Tao, Y.-T.L., R.S., B.Z., and L.Q. performed research; C.-L. Tao, Y.-T.L., R.S., S.S., C.-L. Tian, and G.-Q.B. analyzed data; C.-L. Tao, Y.-T.L., S.S., P.Z., P.-M.L., Z.H.Z., and G.-Q.B. wrote the paper.

                *C.L. Tao and Y.-T.L. contributed equally to this work.

                Author information
                https://orcid.org/0000-0003-0236-7239
                https://orcid.org/0000-0003-2577-1859
                https://orcid.org/0000-0003-1803-691X
                https://orcid.org/0000-0002-8373-4717
                https://orcid.org/0000-0001-8735-3818
                Article
                1548-17
                10.1523/JNEUROSCI.1548-17.2017
                5815350
                29311144
                e0c24cb0-9cac-4d9f-86f4-940070d7b632
                Copyright © 2018 Tao, Liu et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License Creative Commons Attribution 4.0 International, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.

                History
                : 2 June 2017
                : 17 December 2017
                : 24 December 2017
                Categories
                Research Articles
                Cellular/Molecular
                Custom metadata
                true

                correlative light and electron microscopy,cryo-electron tomography,neurotransmitter receptor,postsynaptic density,synaptic ultrastructure,synaptic vesicle

                Comments

                Comment on this article