0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Explainable hypoglycemia prediction models through dynamic structured grammatical evolution

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Effective blood glucose management is crucial for people with diabetes to avoid acute complications. Predicting extreme values accurately and in a timely manner is of vital importance to them. People with diabetes are particularly concerned about suffering a hypoglycemia (low value) event and, moreover, that the event will be prolonged in time. It is crucial to predict hyperglycemia (high value) and hypoglycemia events that may cause health damages in the short term and potential permanent damages in the long term. This paper describes our research on predicting hypoglycemia events at 30, 60, 90, and 120 minutes using machine learning methods. We propose using structured Grammatical Evolution and dynamic structured Grammatical Evolution to produce interpretable mathematical expressions that predict a hypoglycemia event. Our proposal generates white-box models induced by a grammar based on if-then-else conditions using blood glucose, heart rate, number of steps, and burned calories as the inputs for the machine learning technique. We apply these techniques to create three types of models: individualized, cluster, and population-based. They all are then compared with the predictions of eleven machine learning techniques. We apply these techniques to a dataset of 24 real patients of the Hospital Universitario Principe de Asturias, Madrid, Spain. The resulting models, presented as if-then-else statements that incorporate numeric, relational, and logical operations between variables and constants, are inherently interpretable. The True Positive Rate and True Negative Rate metrics are above 0.90 for 30-minute predictions, 0.80 for 60 min, and 0.70 for 90 min and 120 min for the three types of models. Individualized models exhibit the best metrics, while cluster and population-based models perform similarly. Structured and dynamic structured grammatical evolution techniques perform similarly for all forecasting horizons. Regarding the comparison of different machine learning techniques, on the shorter forecasting horizons, our proposals have a high probability of winning, a probability that diminishes on the longer time horizons. Structured grammatical evolution provides advanced forecasting models that facilitate model explanation, modification, and retesting, offering flexibility for refining solutions post-creation and a deeper understanding of blood glucose behavior. These models have been integrated into the glUCModel application, designed to serve people with diabetes.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          The Mythos of Model Interpretability: In machine learning, the concept of interpretability is both important and slippery.

          Supervised machine-learning models boast remarkable predictive capabilities. But can you trust your model? Will it work in deployment? What else can it tell you about the world?
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Significance of HbA1c Test in Diagnosis and Prognosis of Diabetic Patients

            Diabetes is a global endemic with rapidly increasing prevalence in both developing and developed countries. The American Diabetes Association has recommended glycated hemoglobin (HbA1c) as a possible substitute to fasting blood glucose for diagnosis of diabetes. HbA1c is an important indicator of long-term glycemic control with the ability to reflect the cumulative glycemic history of the preceding two to three months. HbA1c not only provides a reliable measure of chronic hyperglycemia but also correlates well with the risk of long-term diabetes complications. Elevated HbA1c has also been regarded as an independent risk factor for coronary heart disease and stroke in subjects with or without diabetes. The valuable information provided by a single HbA1c test has rendered it as a reliable biomarker for the diagnosis and prognosis of diabetes. This review highlights the role of HbA1c in diagnosis and prognosis of diabetes patients.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Principles and Practice of Explainable Machine Learning

              Artificial intelligence (AI) provides many opportunities to improve private and public life. Discovering patterns and structures in large troves of data in an automated manner is a core component of data science, and currently drives applications in diverse areas such as computational biology, law and finance. However, such a highly positive impact is coupled with a significant challenge: how do we understand the decisions suggested by these systems in order that we can trust them? In this report, we focus specifically on data-driven methods—machine learning (ML) and pattern recognition models in particular—so as to survey and distill the results and observations from the literature. The purpose of this report can be especially appreciated by noting that ML models are increasingly deployed in a wide range of businesses. However, with the increasing prevalence and complexity of methods, business stakeholders in the very least have a growing number of concerns about the drawbacks of models, data-specific biases, and so on. Analogously, data science practitioners are often not aware about approaches emerging from the academic literature or may struggle to appreciate the differences between different methods, so end up using industry standards such as SHAP. Here, we have undertaken a survey to help industry practitioners (but also data scientists more broadly) understand the field of explainable machine learning better and apply the right tools. Our latter sections build a narrative around a putative data scientist, and discuss how she might go about explaining her models by asking the right questions. From an organization viewpoint, after motivating the area broadly, we discuss the main developments, including the principles that allow us to study transparent models vs. opaque models, as well as model-specific or model-agnostic post-hoc explainability approaches. We also briefly reflect on deep learning models, and conclude with a discussion about future research directions.
                Bookmark

                Author and article information

                Contributors
                mvelascc@ucm.es
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                1 June 2024
                1 June 2024
                2024
                : 14
                : 12591
                Affiliations
                [1 ]Universidad Complutense de Madrid, ( https://ror.org/02p0gd045) Calle Prof. José García Santesmases,9, Madrid, 28040 Spain
                [2 ]Instituto de Tecnología del Conocimiento, Street, Madrid, Spain
                Article
                63187
                10.1038/s41598-024-63187-5
                11144253
                38824178
                e0be0fc9-b479-41b1-ab2c-42bf9aa0337d
                © The Author(s) 2024

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 18 January 2024
                : 27 May 2024
                Funding
                Funded by: Agencia Estatal de Investigación
                Award ID: PID2021-125549OB-I00
                Categories
                Article
                Custom metadata
                © Springer Nature Limited 2024

                Uncategorized
                diabetes,hypoglycemia prediction,rule system,structured grammatical evolution,computational biology and bioinformatics,endocrinology,mathematics and computing

                Comments

                Comment on this article