267
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Human Papillomavirus Type 8 Interferes with a Novel C/EBPβ-Mediated Mechanism of Keratinocyte CCL20 Chemokine Expression and Langerhans Cell Migration

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Infection with genus beta human papillomaviruses (HPV) is implicated in the development of non-melanoma skin cancer. This was first evidenced for HPV5 and 8 in patients with epidermodysplasia verruciformis (EV), a genetic skin disease. So far, it has been unknown how these viruses overcome cutaneous immune control allowing their persistence in lesional epidermis of these patients. Here we demonstrate that Langerhans cells, essential for skin immunosurveillance, are strongly reduced in HPV8-positive lesional epidermis from EV patients. Interestingly, the same lesions were largely devoid of the important Langerhans cells chemoattractant protein CCL20. Applying bioinformatic tools, chromatin immunoprecipitation assays and functional studies we identified the differentiation-associated transcription factor CCAAT/enhancer binding protein β (C/EBPβ) as a critical regulator of CCL20 gene expression in normal human keratinocytes. The physiological relevance of this finding is supported by our in vivo studies showing that the expression patterns of CCL20 and nuclear C/EBPβ converge spatially in the most differentiated layers of human epidermis. Our analyses further identified C/EBPβ as a novel target of the HPV8 E7 oncoprotein, which co-localizes with C/EBPβ in the nucleus, co-precipitates with it and interferes with its binding to the CCL20 promoter in vivo. As a consequence, the HPV8 E7 but not E6 oncoprotein suppressed C/EBPβ-inducible and constitutive CCL20 gene expression as well as Langerhans cell migration. In conclusion, our study unraveled a novel molecular mechanism central to cutaneous host defense. Interference of the HPV8 E7 oncoprotein with this regulatory pathway allows the virus to disrupt the immune barrier, a major prerequisite for its epithelial persistence and procarcinogenic activity.

          Author Summary

          Human papillomaviruses (HPVs) infect squamous epithelial cells of skin or mucosa, giving rise to hyperproliferative lesions. A subgroup of “high-risk” genus alpha HPVs is associated with human anogenital malignancies, e.g. cervical cancer. The skin carcinogenic potential of genus beta HPV types, such as HPV8, is fully accepted in epidermodysplasia verruciformis (EV) patients and their contribution to the development of non-melanoma skin cancer in the general population is under investigation. This genetic disorder serves as a model disease for studying the immunobiology, viral persistence and molecular mechanisms of HPV-induced skin carcinogenesis. Here, we demonstrate that antigen-presenting Langerhans cells and the Langerhans cell attracting chemokine CCL20 are strongly reduced in lesional skin of EV patients. We show that the HPV8 encoded E7 oncoprotein substantially contributes to this disturbance of cutaneous innate immune control. Our data define a novel mechanism of C/EBPβ-dependent CCL20 gene regulation. HPV8 E7 directly interacts with this transcription factor, interferes with its binding to the CCL20 promoter and suppresses keratinocyte CCL20 expression as well as Langerhans cell migration. Our study unravels a molecular mechanism of virus-host interaction critical for evading host immune defense and providing a microenvironment that is conducive to persistent HPV infection and skin carcinogenesis.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: found
          • Article: not found

          Dendritic cells rapidly recruited into epithelial tissues via CCR6/CCL20 are responsible for CD8+ T cell crosspriming in vivo.

          The nature of dendritic cell(s) (DC[s]) that conditions efficient in vivo priming of CD8+ CTL after immunization via epithelial tissues remains largely unknown. Here, we show that myeloid DCs rapidly recruited by adjuvants into the buccal mucosa or skin are essential for CD8+ T cell crosspriming. Recruitment of circulating DC precursors, including Gr1+ monocytes, precedes the sequential accumulation of CD11c+ MHC class II+ DCs in dermis and epithelium via a CCR6/CCL20-dependent mechanism. Remarkably, a defect in CCR6, local neutralization of CCL20, or depletion of monocytes prevents in vivo priming of CD8+ CTL against an innocuous protein antigen administered with adjuvant. In addition, transfer of CCR6-sufficient Gr1+ monocytes restores CD8+ T cell priming in CCR6( degrees / degrees ) mice via a direct Ag presentation mechanism. Thus, newly recruited DCs likely derived from circulating monocytes are responsible for efficient crosspriming of CD8+ CTL after mucosal or skin immunization.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Human papillomaviruses.

            (2007)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mutations in two adjacent novel genes are associated with epidermodysplasia verruciformis.

              Epidermodysplasia verruciformis (OMIM 226400) is a rare autosomal recessive genodermatosis associated with a high risk of skin carcinoma that results from an abnormal susceptibility to infection by specific human papillomaviruses (HPVs). We recently mapped a susceptibility locus for epidermodysplasia verruciformis (EV1) to chromosome 17q25. Here we report the identification of nonsense mutations in two adjacent novel genes, EVER1 and EVER2, that are associated with the disease. The gene products EVER1 and EVER2 have features of integral membrane proteins and are localized in the endoplasmic reticulum.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                July 2012
                July 2012
                26 July 2012
                : 8
                : 7
                : e1002833
                Affiliations
                [1 ]Institute of Virology and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
                [2 ]Institute of Virology, Saarland University, Homburg/Saar, Germany
                [3 ]Department of Histology and Embryology Center of Biostructure Research, Medical University of Warsaw, Warsaw, Poland
                [4 ]Institute of Pathology, University of Cologne, Cologne, Germany
                [5 ]Institute of Pathology, University of Leipzig, Leipzig, Germany
                [6 ]Division of Virology, National Institute for Medical Research, Mill Hill, London, United Kingdom
                [7 ]Department of Dermatology and Venereology, Medical University of Warsaw, Warsaw, Poland
                [8 ]Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
                Fred Hutchinson Cancer Research Center, United States of America
                Author notes

                Conceived and designed the experiments: SS TS MO BW. Performed the experiments: TS MO BW CW JD. Analyzed the data: TS SS MO BW JD. Contributed reagents/materials/analysis tools: MM SM ACK HP JD. Wrote the paper: SS MO TS.

                Article
                PPATHOGENS-D-11-02672
                10.1371/journal.ppat.1002833
                3406103
                22911498
                e0b6a847-e0d9-496e-9e6e-1e326b371612
                Sperling et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 5 December 2011
                : 18 June 2012
                Page count
                Pages: 17
                Categories
                Research Article
                Medicine
                Infectious Diseases
                Viral Diseases
                Human Papillomavirus Infection

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article