5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Large-scale site-specific mapping of the O-GalNAc glycoproteome

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Engineered CAR T Cells Targeting the Cancer-Associated Tn-Glycoform of the Membrane Mucin MUC1 Control Adenocarcinoma.

          Genetically modified T cells expressing chimeric antigen receptors (CARs) demonstrate robust responses against lineage restricted, non-essential targets in hematologic cancers. However, in solid tumors, the full potential of CAR T cell therapy is limited by the availability of cell surface antigens with sufficient cancer-specific expression. The majority of CAR targets have been normal self-antigens on dispensable hematopoietic tissues or overexpressed shared antigens. Here, we established that abnormal self-antigens can serve as targets for tumor rejection. We developed a CAR that recognized cancer-associated Tn glycoform of MUC1, a neoantigen expressed in a variety of cancers. Anti-Tn-MUC1 CAR T cells demonstrated target-specific cytotoxicity and successfully controlled tumor growth in xenograft models of T cell leukemia and pancreatic cancer. These findings demonstrate the therapeutic efficacy of CAR T cells directed against Tn-MUC1 and present aberrantly glycosylated antigens as a novel class of targets for tumor therapy with engineered T cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain.

            The isolation of clones encoding the human surface protein T4, and the expression of the T4 gene in new cellular environments, have enabled us to examine the role of this protein in the pathogenesis of AIDS. Our studies support a mechanism of AIDS virus infection that initially involves the specific interaction of the AIDS virus with T4 molecules on the cell surface. This association can be demonstrated on T4+ transformed T and B lymphocytes as well as epithelial cells. Furthermore, the presence of T4 on the surface of all human cells examined is sufficient to render these cells susceptible to AIDS virus infection. Our data suggest that the T4-AIDS virus complex is then internalized by receptor-mediated endocytosis. Finally, we find that the T4 gene is expressed in the brain as well as in lymphoid cells, providing an explanation for the dual neurotropic and lymphotropic character of the AIDS virus. In this manner, a T lymphocyte surface protein important in mediating effector cell-target cell interactions has been exploited by a human retrovirus to specifically target the AIDS virus to populations of T4+ cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mining the O-glycoproteome using zinc-finger nuclease-glycoengineered SimpleCell lines.

              Zinc-finger nuclease (ZFN) gene targeting is emerging as a versatile tool for engineering of multiallelic gene deficiencies. A longstanding obstacle for detailed analysis of glycoproteomes has been the extensive heterogeneities in glycan structures and attachment sites. Here we applied ZFN targeting to truncate the O-glycan elongation pathway in human cells, generating stable 'SimpleCell' lines with homogenous O-glycosylation. Three SimpleCell lines expressing only truncated GalNAcα or NeuAcα2-6GalNAcα O-glycans were produced, allowing straightforward isolation and sequencing of GalNAc O-glycopeptides from total cell lysates using lectin chromatography and nanoflow liquid chromatography-mass spectrometry (nLC-MS/MS) with electron transfer dissociation fragmentation. We identified >100 O-glycoproteins with >350 O-glycan sites (the great majority previously unidentified), including a GalNAc O-glycan linkage to a tyrosine residue. The SimpleCell method should facilitate analyses of important functions of protein glycosylation. The strategy is also applicable to other O-glycoproteomes.
                Bookmark

                Author and article information

                Journal
                Nature Protocols
                Nat Protoc
                Springer Science and Business Media LLC
                1754-2189
                1750-2799
                July 17 2020
                Article
                10.1038/s41596-020-0345-1
                32681153
                e0a36ddb-e40f-4096-8665-a9d019d7949e
                © 2020

                http://www.springer.com/tdm

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article