5
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Assessment of CSM–CERES–Rice as a Decision Support Tool in the Identification of High-Yielding Drought-Tolerant Upland Rice Genotypes

      , , , , , ,
      Agronomy

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Drought is considered as one of the critical abiotic stresses affecting the growth and productivity of upland rice. Advanced and rapid identification of drought-tolerant high-yielding genotypes in comparison to conventional rice breeding trials and assessments can play a decisive role in tackling climate-change-associated drought events. This study has endeavored to explore the potential of the CERES–Rice model as a decision support tool (DST) in the identification of drought-tolerant high-yielding upland rice genotypes. Two experiments mentioned as potential experiment (1) for model calibration under optimum conditions and an experiment for yield assessment (2) with three irrigation treatments, (i) a control (100% field capacity [FC]), (ii) moderate stress (70% FC), and (iii) severe stress (50 % FC), were conducted. The results from the yield assessment experiment indicated that the grain yield of the studied genotypes decreased by 24–62% under moderate stress and by 43–78% under severe stress as compared to the control. The values for the drought susceptibility index (DSI) ranged 0.54–1.38 for moderate stress and 0.68–1.23 for severe stress treatment. Based on the DSI and relative yield, genotypes Khao/Sai, Dawk Kham, Dawk Pa–yawm, Goo Meuang Luang, and Mai Tahk under moderate stress and Dawk Kha, Khao/Sai, Nual Hawm, Dawk Pa–yawm, and Bow Leb Nahag under severe stress were among the top five drought-tolerant genotypes as well as high-yielding genotypes. The model accurately simulated grain yield under different irrigation treatments with normalized root mean square error < 10%. An inverse relationship between simulated drought stress indices and grain yield was observed in the regression analysis. Simulated stress indices and water use efficiency (WUE) under different irrigation treatments revealed that the identified drought-tolerant high-yielding genotypes had lower values for stress indices and an increasing trend in their WUE indicating that the model was able to aid in decision support for identifying drought-tolerant genotypes. Simulating the drought stress indices could assist in predicting the response of a genotype under drought stress and the final yield at harvest. The results support the idea that the model could be used as a DST in the identification of drought-tolerant high-yielding genotypes in stressed as well as non-stressed conditions, thus assisting in the genotypic selection process in rice crop breeding programs.

          Related collections

          Most cited references69

          • Record: found
          • Abstract: not found
          • Article: not found

          The DSSAT cropping system model

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Statistics for the evaluation and comparison of models

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                ABSGGL
                Agronomy
                Agronomy
                2073-4395
                February 2023
                January 31 2023
                : 13
                : 2
                : 432
                Article
                10.3390/agronomy13020432
                e09e1371-0e85-4b5a-91a1-531ebf1f12ce
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article