14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dissecting the Dual Nature of Hyaluronan in the Tumor Microenvironment

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hyaluronan (HA) is a glycosaminoglycan with a simple structure but diverse and often opposing functions. The biological activities of this polysaccharide depend on its molecular weight and the identity of interacting receptors. HA is initially synthesized as high molecular-weight (HMW) polymers, which maintain homeostasis and restrain cell proliferation and migration in normal tissues. These HMW-HA functions are mediated by constitutively expressed receptors including CD44, LYVE-1, and STABILIN2. During normal processes such as tissue remodeling and wound healing, HMW-HA is fragmented into low molecular weight polymers (LMW-HA) by hyaluronidases and free radicals, which promote inflammation, immune cell recruitment and the epithelial cell migration. These functions are mediated by RHAMM and TLR2,4, which coordinate signaling with CD44 and other HA receptors. Tumor cells hijack the normally tightly regulated HA production/fragmentation associated with wound repair/remodeling, and these HA functions participate in driving and maintaining malignant progression. However, elevated HMW-HA production in the absence of fragmentation is linked to cancer resistance. The controlled production of HA polymer sizes and their functions are predicted to be key to dissecting the role of microenvironment in permitting or restraining the oncogenic potential of tissues. This review focuses on the dual nature of HA in cancer initiation vs. resistance, and the therapeutic potential of HA for chemo-prevention and as a target for cancer management.

          Related collections

          Most cited references92

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Interactions between Hyaluronan and Its Receptors (CD44, RHAMM) Regulate the Activities of Inflammation and Cancer

          The glycosaminoglycan hyaluronan (HA), a major component of extracellular matrices, and cell surface receptors of HA have been proposed to have pivotal roles in cell proliferation, migration, and invasion, which are necessary for inflammation and cancer progression. CD44 and receptor for HA-mediated motility (RHAMM) are the two main HA-receptors whose biological functions in human and murine inflammations and tumor cells have been investigated comprehensively. HA was initially considered to be only an inert component of connective tissues, but is now known as a “dynamic” molecule with a constant turnover in many tissues through rapid metabolism that involves HA molecules of various sizes: high molecular weight HA (HMW HA), low molecular weight HA, and oligosaccharides. The intracellular signaling pathways initiated by HA interactions with CD44 and RHAMM that lead to inflammatory and tumorigenic responses are complex. Interestingly, these molecules have dual functions in inflammations and tumorigenesis. For example, the presence of CD44 is involved in initiation of arthritis, while the absence of CD44 by genetic deletion in an arthritis mouse model increases rather than decreases disease severity. Similar dual functions of CD44 exist in initiation and progression of cancer. RHAMM overexpression is most commonly linked to cancer progression, whereas loss of RHAMM is associated with malignant peripheral nerve sheath tumor growth. HA may similarly perform dual functions. An abundance of HMW HA can promote malignant cell proliferation and development of cancer, whereas antagonists to HA-CD44 signaling inhibit tumor cell growth in vitro and in vivo by interfering with HMW HA-CD44 interaction. This review describes the roles of HA interactions with CD44 and RHAMM in inflammatory responses and tumor development/progression, and how therapeutic strategies that block these key inflammatory/tumorigenic processes may be developed in rodent and human diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            High molecular weight hyaluronan mediates the cancer resistance of the naked mole-rat

            The naked mole-rat displays exceptional longevity, with a maximum lifespan exceeding 30 years 1–3 . This is the longest reported lifespan for a rodent species and is especially striking considering the small body mass of the naked mole-rat. In comparison, a similarly sized house mouse has a maximum lifespan of 4 years 4,5 . In addition to their longevity, naked mole-rats show an unusual resistance to cancer. Multi-year observations of large naked mole-rat colonies did not detect a single incidence of cancer 2,6 . Here we identify a mechanism responsible for the naked mole-rat’s cancer resistance. We found that naked mole-rat fibroblasts secrete extremely high molecular weight hyaluronan (HA), which is over five times larger than human or mouse HA. This high molecular weight HA accumulates abundantly in naked mole rat tissues due to the decreased activity of HA-degrading enzymes and a unique sequence of hyaluronan synthase 2 (HAS2). Furthermore, the naked mole-rat cells are more sensitive to HA signaling, as the naked mole rat cells have a higher affinity to HA than the mouse or human cells. Perturbation of the signaling pathways sufficient for malignant transformation of mouse fibroblasts fails to transform naked mole-rat cells. However, once high molecular weight HA is removed by either knocking down HAS2 or overexpressing the HA-degrading enzyme, Hyal2, naked mole-rat cells become susceptible to malignant transformation and readily form tumors in mice. We speculate that naked mole-rats have evolved a higher concentration of HA in the skin to provide skin elasticity needed for life in underground tunnels. This trait may have then been co-opted to provide cancer resistance and longevity to this species.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Hyaluronic acid: A key molecule in skin aging

              Skin aging is a multifactorial process consisting of two distinct and independent mechanisms: intrinsic and extrinsic aging. Youthful skin retains its turgor, resilience and pliability, among others, due to its high content of water. Daily external injury, in addition to the normal process of aging, causes loss of moisture. The key molecule involved in skin moisture is hyaluronic acid (HA) that has unique capacity in retaining water. There are multiple sites for the control of HA synthesis, deposition, cell and protein association and degradation, reflecting the complexity of HA metabolism. The enzymes that synthesize or catabolize HA and HA receptors responsible for many of the functions of HA are all multigene families with distinct patterns of tissue expression. Understanding the metabolism of HA in the different layers of the skin and the interactions of HA with other skin components will facilitate the ability to modulate skin moisture in a rational manner.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                10 May 2019
                2019
                : 10
                : 947
                Affiliations
                [1] 1Department of Biochemistry, Western University , London, ON, Canada
                [2] 2London Regional Cancer Program, Lawson Health Research Institute , London, ON, Canada
                [3] 3Department of Oncology, Biochemistry and Surgery, Schulich School of Medicine and Dentistry, Western University , London, ON, Canada
                Author notes

                Edited by: Hiroto Kawashima, Chiba University, Japan

                Reviewed by: Vincent Charles Hascall, Cleveland Clinic Lerner College of Medicine, United States; Suniti Misra, Medical University of South Carolina, United States

                *Correspondence: Eva Turley eva.turley@ 123456lhsc.on.ca

                This article was submitted to Cancer Immunity and Immunotherapy, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2019.00947
                6522846
                31134064
                e06eb4d4-797e-49e4-84bf-bfa11e1e1196
                Copyright © 2019 Liu, Tolg and Turley.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 04 December 2018
                : 12 April 2019
                Page count
                Figures: 2, Tables: 0, Equations: 0, References: 112, Pages: 9, Words: 7436
                Funding
                Funded by: Breast Cancer Society of Canada 10.13039/100012172
                Funded by: Cancer Research Society 10.13039/100009326
                Funded by: Canadian Cancer Society 10.13039/501100000521
                Categories
                Immunology
                Mini Review

                Immunology
                hyaluronan,hyaluronan receptors,tumor microenvironment,cancer resistance,tumor initiation,cd44,rhamm

                Comments

                Comment on this article