19
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      International Journal of Nanomedicine (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the application of nanotechnology in diagnostics, therapeutics, and drug delivery systems throughout the biomedical field. Sign up for email alerts here.

      105,621 Monthly downloads/views I 7.033 Impact Factor I 10.9 CiteScore I 1.22 Source Normalized Impact per Paper (SNIP) I 1.032 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Global trends in nanomedicine research on triple negative breast cancer: a bibliometric analysis

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nanotechnology has emerged as a promising tool in the clinic to combat several difficult-to-manage diseases, such as cancer, which is the second leading cause of death worldwide. Chemotherapeutic drugs present several limitations such as undesired side effects, low specificity, resistance, and high relapse rates. Triple negative breast cancer (TNBC) is caused by cells that lack specific receptors in their membrane, such as estrogen (ER+) and progesterone (PR+) receptors, or by cells that do not express the amplification of human epidermal growth factor receptor-2 (HER-2+). This cancer type has poor prognosis, high relapse rates, and no targeted therapies. Thus, this study aimed to investigate the trends of nanotechnology research in TNBC and compare the contribution of research from different regions, institutions, and authors. A search of the studies published between 2012 and 2017, related to nanotechnology and TNBC, with different keyword combinations, was performed in the Scopus database. The keywords found in this search were grouped into four clusters, in which “breast cancer” was the most mentioned (1,133 times) and the word “MCF-7 cell line” is one of the latest hotspots that appeared in the year 2016. A total of 1,932 articles, which were cited 26,450 times, were identified. The USA accounted for 28.36% of the articles and 27.61% of the citations; however, none of its centers appeared in the list of 10 most productive ones in terms of publications. The journals Biomaterials and International Journal of Nanomedicine had the highest number of publications. The USA and China had the highest number of articles produced and cited; however, the highest average citation per article was from Singapore. The studies focused on the research of antineoplastic agents in animal models and cell culture, and these were the most used topics in research with nanotechnology and TNBC.

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals.

          Mesoporous silica nanoparticles (MSNs) are a promising material for drug delivery. In this Full Paper, MSNs are first shown to be well tolerated, as demonstrated by serological, hematological, and histopathological examinations of blood samples and mouse tissues after MSN injection. Biodistribution studies using human cancer xenografts are carried out with in vivo imaging and fluorescent microscopy imaging, as well as with inductively coupled plasma mass spectroscopy. The results show that MSNs preferentially accumulate in tumors. Finally, the drug-delivery capability of MSNs is demonstrated by following tumor growth in mice treated with camptothecin-loaded MSNs. These results indicate that MSNs are biocompatible, preferentially accumulate in tumors, and effectively deliver drugs to the tumors and suppress tumor growth.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            RGD-based strategies to target alpha(v) beta(3) integrin in cancer therapy and diagnosis.

            The integrin α(v)β(3) plays an important role in angiogenesis. It is expressed on tumoral endothelial cells as well as on some tumor cells. RGD peptides are well-known to bind preferentially to the α(v)β(3) integrin. In this context, targeting tumor cells or tumor vasculature by RGD-based strategies is a promising approach for delivering anticancer drugs or contrast agents for cancer therapy and diagnosis. RGD-based strategies include antagonist drugs (peptidic or peptidomimetic) of the RGD sequence, RGD-conjugates, and the grafting of the RGD peptide or peptidomimetic, as targeting ligand, at the surface of nanocarriers. Although all strategies are overviewed, this review aims to particularly highlight the position of RGD-based nanoparticles in cancer therapy and imaging. This review is divided into three parts: the first one describes the context of angiogenesis, the role of the integrin α(v)β(3), and the binding of the RGD peptide to this integrin; the second one focuses on RGD-based strategies in cancer therapy; while the third one focuses on RGD-based strategies in cancer diagnosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile.

              We describe the development and clinical translation of a targeted polymeric nanoparticle (TNP) containing the chemotherapeutic docetaxel (DTXL) for the treatment of patients with solid tumors. DTXL-TNP is targeted to prostate-specific membrane antigen, a clinically validated tumor antigen expressed on prostate cancer cells and on the neovasculature of most nonprostate solid tumors. DTXL-TNP was developed from a combinatorial library of more than 100 TNP formulations varying with respect to particle size, targeting ligand density, surface hydrophilicity, drug loading, and drug release properties. Pharmacokinetic and tissue distribution studies in rats showed that the NPs had a blood circulation half-life of about 20 hours and minimal liver accumulation. In tumor-bearing mice, DTXL-TNP exhibited markedly enhanced tumor accumulation at 12 hours and prolonged tumor growth suppression compared to a solvent-based DTXL formulation (sb-DTXL). In tumor-bearing mice, rats, and nonhuman primates, DTXL-TNP displayed pharmacokinetic characteristics consistent with prolonged circulation of NPs in the vascular compartment and controlled release of DTXL, with total DTXL plasma concentrations remaining at least 100-fold higher than sb-DTXL for more than 24 hours. Finally, initial clinical data in patients with advanced solid tumors indicated that DTXL-TNP displays a pharmacological profile differentiated from sb-DTXL, including pharmacokinetics characteristics consistent with preclinical data and cases of tumor shrinkage at doses below the sb-DTXL dose typically used in the clinic.
                Bookmark

                Author and article information

                Journal
                Int J Nanomedicine
                Int J Nanomedicine
                International Journal of Nanomedicine
                International Journal of Nanomedicine
                Dove Medical Press
                1176-9114
                1178-2013
                2018
                17 April 2018
                : 13
                : 2321-2336
                Affiliations
                [1 ]Department of Gerontology
                [2 ]Department of Production Engineering, Federal University of São Carlos, São Carlos, SP, Brazil
                Author notes
                Correspondence: Márcia Regina Cominetti, Department of Gerontology, Federal University of São Carlos, Rod. Washington Luis, Km 235, São Carlos, SP, Brazil, Email mcominetti@ 123456ufscar.br
                Article
                ijn-13-2321
                10.2147/IJN.S164355
                5910795
                29713164
                e05caffd-7788-4119-8bd9-aeb82cee8828
                © 2018 Teles et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Review

                Molecular medicine
                oncology,breast cancer,nanotechnology,nanomedicine,bibliometric
                Molecular medicine
                oncology, breast cancer, nanotechnology, nanomedicine, bibliometric

                Comments

                Comment on this article