22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparison of 2-Aminobenzamide, Procainamide and RapiFluor-MS as Derivatizing Agents for High-Throughput HILIC-UPLC-FLR-MS N-glycan Analysis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Rising awareness of the universal importance of protein N-glycosylation governs the development of further advances in N-glycan analysis. Nowadays it is well known that correct glycosylation is essential for proper protein function, which emanates from its important role in many physiological processes. Furthermore, glycosylation is involved in pathophysiology of multiple common complex diseases. In the vast majority of cases, N-glycosylation profiles are analyzed from enzymatically released glycans, which can be further derivatized in order to enhance the sensitivity of the analysis. Techniques wherein derivatized N-glycans are profiled using hydrophilic interaction chromatography (HILIC) with fluorescence (FLR) and mass spectrometry (MS) detection are now routinely performed in a high-throughput manner. Therefore, we aimed to examine the performance of frequently used labeling compounds −2-aminiobenzamide (2-AB) and procainamide (ProA), and the recently introduced RapiFluor-MS (RF-MS) fluorescent tag. In all experiments N-glycans were released by PNGase F, fluorescently derivatized, purified by HILIC solid phase extraction and profiled using HILIC-UPLC-FLR-MS. We assessed sensitivity, linear range, limit of quantification (LOQ), repeatability and labeling efficiency for all three labels. For this purpose, we employed in-house prepared IgG and a commercially available IgG as a model glycoprotein. All samples were analyzed in triplicates using different amounts of starting material. We also tested the performance of all three labels in a high-throughput setting on 68 different IgG samples, all in duplicates and 22 identical IgG standards. In general, ProA labeled glycans had the highest FLR sensitivity (15-fold and 4-fold higher signal intensities compared to 2-AB and RF-MS respectively) and RF-MS had the highest MS sensitivity (68-fold and 2-fold higher signal intensities compared to 2-AB and ProA, respectively). ProA and RF-MS showed comparable limits of quantification with both FLR and MS detection, whilst 2-AB exhibited the lowest sensitivity. All labeling procedures showed good and comparable repeatability. Furthermore, the results indicated that labeling efficiency was very similar for all three labels. In conclusion, all three labels are a good choice for N-glycan derivatization in high-throughput HILIC-UPLC-FLR-MS N-glycan analysis, although ProA and RF-MS are a better option when higher sensitivity is needed.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          High Throughput Isolation and Glycosylation Analysis of IgG–Variability and Heritability of the IgG Glycome in Three Isolated Human Populations*

          All immunoglobulin G molecules carry N-glycans, which modulate their biological activity. Changes in N-glycosylation of IgG associate with various diseases and affect the activity of therapeutic antibodies and intravenous immunoglobulins. We have developed a novel 96-well protein G monolithic plate and used it to rapidly isolate IgG from plasma of 2298 individuals from three isolated human populations. N-glycans were released by PNGase F, labeled with 2-aminobenzamide and analyzed by hydrophilic interaction chromatography with fluorescence detection. The majority of the structural features of the IgG glycome were consistent with previous studies, but sialylation was somewhat higher than reported previously. Sialylation was particularly prominent in core fucosylated glycans containing two galactose residues and bisecting GlcNAc where median sialylation level was nearly 80%. Very high variability between individuals was observed, approximately three times higher than in the total plasma glycome. For example, neutral IgG glycans without core fucose varied between 1.3 and 19%, a difference that significantly affects the effector functions of natural antibodies, predisposing or protecting individuals from particular diseases. Heritability of IgG glycans was generally between 30 and 50%. The individual's age was associated with a significant decrease in galactose and increase of bisecting GlcNAc, whereas other functional elements of IgG glycosylation did not change much with age. Gender was not an important predictor for any IgG glycan. An important observation is that competition between glycosyltransferases, which occurs in vitro, did not appear to be relevant in vivo, indicating that the final glycan structures are not a simple result of competing enzymatic activities, but a carefully regulated outcome designed to meet the prevailing physiological needs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A systematic approach to protein glycosylation analysis: a path through the maze.

            Protein glycosylation is an important post-translational modification. It is a feature that enhances the functional diversity of proteins and influences their biological activity. A wide range of functions for glycans have been described, from structural roles to participation in molecular trafficking, self-recognition and clearance. Understanding the basis of these functions is challenging because the biosynthetic machinery that constructs glycans executes sequential and competitive steps that result in a mixture of glycosylated variants (glycoforms) for each glycoprotein. Additionally, naturally occurring glycoproteins are often present at low levels, putting pressure on the sensitivity of the analytical technologies. No universal method for the rapid and reliable identification of glycan structure is currently available; hence, research goals must dictate the best method or combination of methods. To this end, we introduce some of the major technologies routinely used for structural N- and O-glycan analysis, describing the complementary information that each provides.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Glycan labeling strategies and their use in identification and quantification

              Most methods for the analysis of oligosaccharides from biological sources require a glycan derivatization step: glycans may be derivatized to introduce a chromophore or fluorophore, facilitating detection after chromatographic or electrophoretic separation. Derivatization can also be applied to link charged or hydrophobic groups at the reducing end to enhance glycan separation and mass-spectrometric detection. Moreover, derivatization steps such as permethylation aim at stabilizing sialic acid residues, enhancing mass-spectrometric sensitivity, and supporting detailed structural characterization by (tandem) mass spectrometry. Finally, many glycan labels serve as a linker for oligosaccharide attachment to surfaces or carrier proteins, thereby allowing interaction studies with carbohydrate-binding proteins. In this review, various aspects of glycan labeling, separation, and detection strategies are discussed. Figure MALDI-FTICR-MS of 2AA-labeled total plasma N-glycans
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Chem
                Front Chem
                Front. Chem.
                Frontiers in Chemistry
                Frontiers Media S.A.
                2296-2646
                26 July 2018
                2018
                : 6
                : 324
                Affiliations
                [1] 1Faculty of Pharmacy and Biochemistry, University of Zagreb , Zagreb, Croatia
                [2] 2Genos Glycoscience Research Laboratory , Zagreb, Croatia
                Author notes

                Edited by: Huan-Tsung Chang, National Taiwan University, Taiwan

                Reviewed by: Pang-Hung Hsu, National Taiwan Ocean University, Taiwan; Lingxin Chen, Yantai Institute of Coastal Zone Research (CAS), China

                *Correspondence: Toma Keser tkeser@ 123456pharma.hr

                This article was submitted to Analytical Chemistry, a section of the journal Frontiers in Chemistry

                Article
                10.3389/fchem.2018.00324
                6070730
                30094234
                e05caee6-233b-4fac-9605-2023fe660cd3
                Copyright © 2018 Keser, Pavić, Lauc and Gornik.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 03 May 2018
                : 11 July 2018
                Page count
                Figures: 3, Tables: 3, Equations: 0, References: 21, Pages: 12, Words: 7069
                Funding
                Funded by: Hrvatska Zaklada za Znanost 10.13039/501100004488
                Award ID: UIP-2014-09-7769
                Categories
                Chemistry
                Original Research

                n-glycans,2-aminobenzamide,procainamide,rapifluor-ms,igg,hilic,fluorescence,mass spectrometry

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content275

                Cited by35

                Most referenced authors463