7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genome-wide analyses of the bHLH gene family reveals structural and functional characteristics in the aquatic plant Nelumbo nucifera

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lotus ( Nelumbo nucifera Gaertn.) is an economically important aquatic plant with multiple applications, but water salinity and cold stress seriously affect lotus yield and distribution. The basic helix-loop-helix (bHLH) transcription factors (TFs) play a vital role in plant growth and development, metabolic regulation processes and responses to environmental changes. However, systematic analyses of the bHLH TF family in lotus has not yet been reported. Here, we report the identification and description of bHLH genes in lotus ( NnbHLHs) with a focus on functional prediction, particularly for those involved in stress resistance. In all, 115 NnbHLHs were identified in the lotus genome and classified into 19 subfamilies. The chromosomal distribution, physicochemical properties, bHLH domain, conserved motif compositions and evolution of these 115 NnbHLHs were further analyzed. To better understand the functions of the lotus bHLH family, gene ontology, cis-element, and phylogenetic analyses were conducted. NnbHLHs were predicted to be involved in plant development, metabolic regulation and responses to stress, in accordance with previous findings. Overall, 15 NnbHLHs were further investigated with functional prediction via quantitative real-time PCR analyses. Meanwhile, expression profiles of NnbHLHs in four tissues indicated that many NnbHLHs showed tissue preference in their expression. This study is supposed to provide a good foundation for further research into the functions and evolution of NnbHLHs, and identifies candidate genes for stress resistance in lotus.

          Related collections

          Most cited references76

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          SMART: recent updates, new developments and status in 2015

          SMART (Simple Modular Architecture Research Tool) is a web resource (http://smart.embl.de/) providing simple identification and extensive annotation of protein domains and the exploration of protein domain architectures. In the current version, SMART contains manually curated models for more than 1200 protein domains, with ∼200 new models since our last update article. The underlying protein databases were synchronized with UniProt, Ensembl and STRING, bringing the total number of annotated domains and other protein features above 100 million. SMART's ‘Genomic’ mode, which annotates proteins from completely sequenced genomes was greatly expanded and now includes 2031 species, compared to 1133 in the previous release. SMART analysis results pages have been completely redesigned and include links to several new information sources. A new, vector-based display engine has been developed for protein schematics in SMART, which can also be exported as high-resolution bitmap images for easy inclusion into other documents. Taxonomic tree displays in SMART have been significantly improved, and can be easily navigated using the integrated search engine.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses.

            Jasmonates (JAs) trigger an important transcriptional reprogramming of plant cells to modulate both basal development and stress responses. In spite of the importance of transcriptional regulation, only one transcription factor (TF), the Arabidopsis thaliana basic helix-loop-helix MYC2, has been described so far as a direct target of JAZ repressors. By means of yeast two-hybrid screening and tandem affinity purification strategies, we identified two previously unknown targets of JAZ repressors, the TFs MYC3 and MYC4, phylogenetically closely related to MYC2. We show that MYC3 and MYC4 interact in vitro and in vivo with JAZ repressors and also form homo- and heterodimers with MYC2 and among themselves. They both are nuclear proteins that bind DNA with sequence specificity similar to that of MYC2. Loss-of-function mutations in any of these two TFs impair full responsiveness to JA and enhance the JA insensitivity of myc2 mutants. Moreover, the triple mutant myc2 myc3 myc4 is as impaired as coi1-1 in the activation of several, but not all, JA-mediated responses such as the defense against bacterial pathogens and insect herbivory. Our results show that MYC3 and MYC4 are activators of JA-regulated programs that act additively with MYC2 to regulate specifically different subsets of the JA-dependent transcriptional response.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gene duplication and evolutionary novelty in plants.

              Duplication is a prominent feature of plant genomic architecture. This has led many researchers to speculate that gene duplication may have played an important role in the evolution of phenotypic novelty within plants. Until recently, however, it was difficult to make this connection. We are now beginning to understand how duplication has contributed to adaptive evolution in plants. In this review we introduce the sources of gene duplication and predictions of the various fates of duplicates. We also highlight several recent and pertinent examples from the literature. These examples demonstrate the importance of the functional characteristics of genes and the source of duplication in influencing evolutionary outcome.
                Bookmark

                Author and article information

                Contributors
                Journal
                PeerJ
                PeerJ
                PeerJ
                PeerJ
                PeerJ
                PeerJ Inc. (San Diego, USA )
                2167-8359
                14 June 2019
                2019
                : 7
                : e7153
                Affiliations
                [1 ]Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agriculture University , Wuhan, China
                [2 ]Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Affairs , Wuhan, China
                Article
                7153
                10.7717/peerj.7153
                6573809
                31231599
                e051bb92-d100-472c-80f3-178df807de5f
                © 2019 Mao et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.

                History
                : 29 January 2019
                : 17 May 2019
                Funding
                Funded by: National Natural Science Foundation of China
                Award ID: Project 31700619
                Funded by: Fundamental Research Funds for the Central Universities
                Award ID: 2662016QD022
                This research was funded by the National Natural Science Foundation of China (Project 31700619) and the Fundamental Research Funds for the Central Universities (No: 2662016QD022). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Bioinformatics
                Genomics
                Molecular Biology
                Plant Science

                lotus,bhlh gene family,structural and evolutional analyses,functional prediction,stress

                Comments

                Comment on this article