29
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      To submit to Bentham Journals, please click here

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Relevance of Excitable Media Theory and Retinal Spreading Depression Experiments in Preclinical Pharmacological Research

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In preclinical neuropharmacological research, molecular, cell-based, and systems using animals are well established. On the tissue level the situation is less comfortable, although during the last decades some effort went into establishing such systems, i.e. using slices of the vertebrate brain together with optical and electrophysiological techniques. However, these methods are neither fast, nor can they be automated or upscaled. By contrast, the chicken retina can be used as a suitable model. It is easy accessible and can be kept alive in vitro for hours up to days. Due to its structure, in addition the retina displays remarkable intrinsic optical signals, which can be easily used in experiments. Also to electrophysiological methods the retina is well accessible.

          In excitable tissue, to which the brain and the retina belong, propagating excitation waves can be expected, and the spreading depression is such a phenomenon. It has been first observed in the forties of the last century. Later, Martins-Ferreira established it in the chicken retina (retinal spreading depression or RSD). The electrophysiological characteristics of it are identical with those of the cortical SD. The metabolic differences are known and can be taken into account. The experimental advantage of the RSD compared to the cortical SD is the pronounced intrinsic optical signal (IOS) associated with the travelling wave. This is due to the maximum transparency of retinal tissue in the functional state; thus any physiological event will change it markedly and therefore can be easily seen even by naked eye. The theory can explain wave spread in one (action potentials), two (RSDs) and three dimensions (one heart beat).

          In this review we present the experimental and the excitable media context for the data interpretation using as example the cholinergic pharmacology in relation to functional syndromes. We also discuss the intrinsic optical signal and how to use it in pre-clinical research.

          Related collections

          Most cited references165

          • Record: found
          • Abstract: found
          • Article: not found

          Interactions between macromolecules and ions: The Hofmeister series.

          The Hofmeister series, first noted in 1888, ranks the relative influence of ions on the physical behavior of a wide variety of aqueous processes ranging from colloidal assembly to protein folding. Originally, it was thought that an ion's influence on macromolecular properties was caused at least in part by 'making' or 'breaking' bulk water structure. Recent time-resolved and thermodynamic studies of water molecules in salt solutions, however, demonstrate that bulk water structure is not central to the Hofmeister effect. Instead, models are being developed that depend upon direct ion-macromolecule interactions as well as interactions with water molecules in the first hydration shell of the macromolecule.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Glial cells in (patho)physiology.

            Neuroglial cells define brain homeostasis and mount defense against pathological insults. Astroglia regulate neurogenesis and development of brain circuits. In the adult brain, astrocytes enter into intimate dynamic relationship with neurons, especially at synaptic sites where they functionally form the tripartite synapse. At these sites, astrocytes regulate ion and neurotransmitter homeostasis, metabolically support neurons and monitor synaptic activity; one of the readouts of the latter manifests in astrocytic intracellular Ca(2+) signals. This form of astrocytic excitability can lead to release of chemical transmitters via Ca(2+) -dependent exocytosis. Once in the extracellular space, gliotransmitters can modulate synaptic plasticity and cause changes in behavior. Besides these physiological tasks, astrocytes are fundamental for progression and outcome of neurological diseases. In Alzheimer's disease, for example, astrocytes may contribute to the etiology of this disorder. Highly lethal glial-derived tumors use signaling trickery to coerce normal brain cells to assist tumor invasiveness. This review not only sheds new light on the brain operation in health and disease, but also points to many unknowns. © 2012 The Authors. Journal of Neurochemistry © 2012 International Society for Neurochemistry.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ions from the Hofmeister series and osmolytes: effects on proteins in solution and in the crystallization process.

              Sephadex G-10 gel sieving chromatography, Jones-Dole viscosity B coefficients, and solution neutron and X-ray diffraction are used to show that small ions of high charge density (e.g., sulfate, phosphate, the carboxylate, sodium, and fluoride) are strongly hydrated (kosmotropes) whereas large monovalent ions of low charge density (e.g., ammonium, chloride, potassium, and the positively charged amino acid side chains) are weakly hydrated (chaotropes). The heats of solution of the crystalline alkali halides are then used to show that only oppositely charged ions of equal water affinity spontaneously form inner sphere ion pairs, and that this controls ion binding to proteins. The net charge on a protein is a major determinant of its solubility. Finally, the surface potential difference and surface tension at an air-salt solution interface are used to generate a simple model for how ions affect protein stability and solubility through indirect interactions at the protein-solution interface. A few comments about small neutral osmolytes are also included.
                Bookmark

                Author and article information

                Journal
                Curr Neuropharmacol
                Curr Neuropharmacol
                CN
                Current Neuropharmacology
                Bentham Science Publishers
                1570-159X
                1875-6190
                September 2014
                September 2014
                : 12
                : 5
                : 413-433
                Affiliations
                [1 ]Medical Faculty, Federal University São João Del Rei, CCO, Divinopolis, MG, Brazil LIM- 26 Medical Faculty, USP, Medical Faculty, Sao Paulo, Brazil
                [2 ]University of Hohenheim, Inst. Physiol., Stuttgart, Germany
                Author notes
                [* ] Address correspondence to this author at the University of Hohenheim, Inst. Physiol., Stuttgart, Germany; Tel: 0049 711 459 22800; Fax: 0049 711 459 23726; E-mail wolfgang.hanke@ 123456uni-hohenheim.de
                Article
                CN-12-413
                10.2174/1570159X12666140630190800
                4243032
                25426010
                e050c28d-0a8c-4388-b557-db52dafed8f1
                ©2014 Bentham Science Publishers

                This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

                History
                : 26 May 2014
                : 29 June 2014
                : 29 June 2014
                Categories
                Article

                Pharmacology & Pharmaceutical medicine
                chicken retina,excitable media,preclinical pharmacology,spreading depression.

                Comments

                Comment on this article