12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Another decade of photoacoustic imaging

      , , ,
      Physics in Medicine & Biology
      IOP Publishing

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references312

          • Record: found
          • Abstract: found
          • Article: not found

          Photoacoustic tomography: in vivo imaging from organelles to organs.

          Photoacoustic tomography (PAT) can create multiscale multicontrast images of living biological structures ranging from organelles to organs. This emerging technology overcomes the high degree of scattering of optical photons in biological tissue by making use of the photoacoustic effect. Light absorption by molecules creates a thermally induced pressure jump that launches ultrasonic waves, which are received by acoustic detectors to form images. Different implementations of PAT allow the spatial resolution to be scaled with the desired imaging depth in tissue while a high depth-to-resolution ratio is maintained. As a rule of thumb, the achievable spatial resolution is on the order of 1/200 of the desired imaging depth, which can reach up to 7 centimeters. PAT provides anatomical, functional, metabolic, molecular, and genetic contrasts of vasculature, hemodynamics, oxygen metabolism, biomarkers, and gene expression. We review the state of the art of PAT for both biological and clinical studies and discuss future prospects.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Contrast agents for molecular photoacoustic imaging.

            Photoacoustic imaging (PAI) is an emerging tool that bridges the traditional depth limits of ballistic optical imaging and the resolution limits of diffuse optical imaging. Using the acoustic waves generated in response to the absorption of pulsed laser light, it provides noninvasive images of absorbed optical energy density at depths of several centimeters with a resolution of ∼100 μm. This versatile and scalable imaging modality has now shown potential for molecular imaging, which enables visualization of biological processes with systemically introduced contrast agents. Understanding the relative merits of the vast range of contrast agents available, from small-molecule dyes to gold and carbon nanostructures to liposome encapsulations, is a considerable challenge. Here we critically review the physical, chemical and biochemical characteristics of the existing photoacoustic contrast agents, highlighting key applications and present challenges for molecular PAI.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A Brain Tumor Molecular Imaging Strategy Using A New Triple-Modality MRI-Photoacoustic-Raman Nanoparticle

              The vexing difficulty in delineating brain tumor margins represents a major obstacle toward better outcome of brain tumor patients. Current imaging methods are often limited by inadequate sensitivity, specificity, and spatial resolution. Here we show that a unique triple-modality Magnetic resonance imaging - Photoacoustic imaging – surface enhanced Raman scattering (SERS) nanoparticle (MPR) can accurately help delineate the margins of brain tumors in living mice both pre- and intra-operatively. The MPRs were detected by all three modalities with at least picomolar sensitivity both in vitro and in living mice. Intravenous injection of MPRs into glioblastoma-bearing mice led to specific MPR accumulation and retention by the tumors, allowing for non-invasive tumor delineation by all three modalities through the intact skull. Raman imaging allowed guidance of intra-operative tumor resection, and histological correlation validated that Raman imaging is accurately delineating brain tumor margins. This novel triple-modality nanoparticle approach holds promise to enable more accurate brain tumor imaging and resection.
                Bookmark

                Author and article information

                Journal
                Physics in Medicine & Biology
                Phys. Med. Biol.
                IOP Publishing
                0031-9155
                1361-6560
                February 26 2021
                March 07 2021
                February 26 2021
                March 07 2021
                : 66
                : 5
                : 05TR01
                Article
                10.1088/1361-6560/abd669
                33361580
                e045ff5c-fbd0-4a9f-b838-6426cb708c6d
                © 2021

                History

                Comments

                Comment on this article