28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Visible spectra of (474640) 2004 VN112-2013 RF98 with OSIRIS at the 10.4 m GTC: evidence for binary dissociation near aphelion among the extreme trans-Neptunian objects

      Preprint
      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The existence of significant anisotropies in the distributions of the directions of perihelia and orbital poles of the known extreme trans-Neptunian objects (ETNOs) has been used to claim that trans-Plutonian planets may exist. Among the known ETNOs, the pair (474640) 2004 VN112-2013 RF98 stands out. Their orbital poles and the directions of their perihelia and their velocities at perihelion/aphelion are separated by a few degrees, but orbital similarity does not necessarily imply common physical origin. In an attempt to unravel their physical nature, visible spectroscopy of both targets was obtained using the OSIRIS camera-spectrograph at the 10.4 m Gran Telescopio Canarias (GTC). From the spectral analysis, we find that 474640-2013 RF98 have similar spectral slopes (12 vs. 15 %/0.1um), very different from Sedna's but compatible with those of (148209) 2000 CR105 and 2012 VP113. These five ETNOs belong to the group of seven linked to the Planet Nine hypothesis. A dynamical pathway consistent with these findings is dissociation of a binary asteroid during a close encounter with a planet and we confirm its plausibility using N-body simulations. We thus conclude that both the dynamical and spectroscopic properties of 474640-2013 RF98 favour a genetic link and their current orbits suggest that the pair was kicked by a perturber near aphelion.

          Related collections

          Most cited references1

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The Compositions of Kuiper Belt Objects

          Objects in the Kuiper belt are small and far away thus difficult to study in detail even with the best telescopes available at earth. For much of the early history of the Kuiper belt, studies of the compositions of these objects were relegated to collections of moderate quality spectral and photometric data that remained difficult to interpret. Much early effort was put into simple correlations of surface colors and identifications of spectral features, but it was difficult to connect the observations to a larger understanding of the region. The last decade, however, has seen a blossoming in our understanding of the compositions of objects in the Kuiper belt. This blossoming is a product of the discoveries of larger -- and thus easier to study -- objects, continued dedication to the collection of a now quite large collection of high quality photometric and spectroscopic observations, and continued work at the laboratory and theoretical level. Today we now know of many processes which affect the surface compositions of objects in the Kuiper belt, including atmospheric loss, differentiation and cryovolcanism, radiation processing, the effects of giant impacts, and the early dynamical excitation of the Kuiper belt. We review the large quantity of data now available and attempt to build a comprehensive framework for understanding the surface compositions and their causes. In contrast to surface compositions, the bulk compositions of objects in the Kuiper belt remain poorly measured and even more poorly understood, but prospects for a deeper understanding of the formation of the the outer solar are even greater from this subject.
            Bookmark

            Author and article information

            Journal
            2017-01-10
            Article
            10.1093/mnrasl/slx003
            1701.02534
            e0356892-7082-4117-bcdd-26320b9ccece

            http://arxiv.org/licenses/nonexclusive-distrib/1.0/

            History
            Custom metadata
            6 pages, 5 figures, 1+3 tables. Accepted for publication in Monthly Notices of the Royal Astronomical Society: Letters
            astro-ph.EP

            Planetary astrophysics
            Planetary astrophysics

            Comments

            Comment on this article

            scite_
            0
            0
            0
            0
            Smart Citations
            0
            0
            0
            0
            Citing PublicationsSupportingMentioningContrasting
            View Citations

            See how this article has been cited at scite.ai

            scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

            Similar content16

            Most referenced authors2