8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Synergistic Effect of Erastin Combined with Nutlin-3 on Vestibular Schwannoma Cells as p53 Modulates Erastin-Induced Ferroptosis Response

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Vestibular schwannoma (VS) is a rare neurotology neoplasm that results in partial neurological defects. As we know, a comprehensive understanding of basic mechanisms and targeted therapy is vital for disease management. In VS, p53 has been proved to suppress tumor progression via a cooperative with the key protein, merlin, as well as regulation of the cell cycle. However, there are more potential mechanisms of p53 in VS needed to exploit. First, via genome-wide RNA expression analysis, we identified differentially expressed genes in VS compared with normal nerves, and then, bioinformatics analyses were used to analyze these differential expression data and suggested a high level of enrichment of cysteine and glutathione metabolism pathways in VS. Meanwhile, we observed a downregulation of SLC7A11/xCT, a component of the cystine/glutamate antiporter (also known as system x c ) involved in cystine uptake. Next, for a deeper study, our group extracted tumor cells from vestibular schwannoma tissues and established two immortalized cell lines named JEI-001 and JEI-002. Secondly, in our established cells, we demonstrated that ferroptosis participated in erastin-induced growth inhibition. As a novel cell death process, ferroptosis driven by iron-mediated lipid reactive oxygen species (lipid ROS), as well as cysteine and glutathione metabolism. Furthermore, ferroptosis contributes to the inhibitory effects of tumor suppressor p53. Here, we show that p53 sensitizes schwannoma cells to ferroptosis by repressing expression of SLC7A11/xCT. Finally, erastin combined with Nutlin-3, which s to p53 activation, triggered antitumor effects of ferroptosis on the growth of schwannoma cells in vitro. These findings present potential mechanism of p53 in schwannomas and raise the possibility of treatment strategies directed against this pathogenesis.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles

          Although genomewide RNA expression analysis has become a routine tool in biomedical research, extracting biological insight from such information remains a major challenge. Here, we describe a powerful analytical method called Gene Set Enrichment Analysis (GSEA) for interpreting gene expression data. The method derives its power by focusing on gene sets, that is, groups of genes that share common biological function, chromosomal location, or regulation. We demonstrate how GSEA yields insights into several cancer-related data sets, including leukemia and lung cancer. Notably, where single-gene analysis finds little similarity between two independent studies of patient survival in lung cancer, GSEA reveals many biological pathways in common. The GSEA method is embodied in a freely available software package, together with an initial database of 1,325 biologically defined gene sets.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ferroptosis: an iron-dependent form of nonapoptotic cell death.

            Nonapoptotic forms of cell death may facilitate the selective elimination of some tumor cells or be activated in specific pathological states. The oncogenic RAS-selective lethal small molecule erastin triggers a unique iron-dependent form of nonapoptotic cell death that we term ferroptosis. Ferroptosis is dependent upon intracellular iron, but not other metals, and is morphologically, biochemically, and genetically distinct from apoptosis, necrosis, and autophagy. We identify the small molecule ferrostatin-1 as a potent inhibitor of ferroptosis in cancer cells and glutamate-induced cell death in organotypic rat brain slices, suggesting similarities between these two processes. Indeed, erastin, like glutamate, inhibits cystine uptake by the cystine/glutamate antiporter (system x(c)(-)), creating a void in the antioxidant defenses of the cell and ultimately leading to iron-dependent, oxidative death. Thus, activation of ferroptosis results in the nonapoptotic destruction of certain cancer cells, whereas inhibition of this process may protect organisms from neurodegeneration. Copyright © 2012 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease

              Ferroptosis is a form of regulated cell death characterized by the iron-dependent accumulation of lipid hydroperoxides to lethal levels. Emerging evidence suggests that ferroptosis represents an ancient vulnerability caused by the incorporation of polyunsaturated fatty acids into cellular membranes, and cells have developed complex systems that exploit and defend against this vulnerability in different contexts. The sensitivity to ferroptosis is tightly linked to numerous biological processes, including amino acid, iron, and polyunsaturated fatty acid metabolism, and the biosynthesis of glutathione, phospholipids, NADPH, and coenzyme Q10. Ferroptosis has been implicated in the pathological cell death associated with degenerative diseases (i.e., Alzheimer's, Huntington's, and Parkinson's diseases), carcinogenesis, stroke, intracerebral hemorrhage, traumatic brain injury, ischemia-reperfusion injury, and kidney degeneration in mammals and is also implicated in heat stress in plants. Ferroptosis may also have a tumor-suppressor function that could be harnessed for cancer therapy. This Primer reviews the mechanisms underlying ferroptosis, highlights connections to other areas of biology and medicine, and recommends tools and guidelines for studying this emerging form of regulated cell death.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Oncol
                J Oncol
                jo
                Journal of Oncology
                Hindawi
                1687-8450
                1687-8469
                2022
                21 March 2022
                : 2022
                : 7507857
                Affiliations
                1Department of Otolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
                2Ear Institute, Shanghai JiaoTong University School of Medicine, Shanghai 200125, China
                3Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200125, China
                Author notes

                Academic Editor: Qingbin Cui

                Author information
                https://orcid.org/0000-0001-7496-9322
                https://orcid.org/0000-0001-8795-359X
                https://orcid.org/0000-0002-7356-5841
                https://orcid.org/0000-0002-0977-0920
                Article
                10.1155/2022/7507857
                8961447
                e01bb129-5c4a-4cde-9c90-5aed1e3b247e
                Copyright © 2022 Weiwei He et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 18 November 2021
                : 1 March 2022
                : 4 March 2022
                Funding
                Funded by: Shanghai 9th People's Hospital
                Award ID: JC201904
                Funded by: Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases
                Award ID: 14DZ2260300
                Funded by: National Natural Science Foundation of China
                Award ID: 81870713
                Categories
                Research Article

                Oncology & Radiotherapy
                Oncology & Radiotherapy

                Comments

                Comment on this article